Skip to main content
Log in

A critical comparison of analytical flow systems exploiting streamlined and pulsed flows

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Multipumping (MPFS) and multicommuted (MCFS) flow systems relying on pulsed and laminar flows were critically compared. The mixing conditions and dispersion associated with both systems were evaluated by simulating the sample with bromocresol green. The molybdenum blue method for phosphate determination in soil extracts was also implemented in both flow systems. Furthermore, laser-induced fluorescence (LIF) was applied to visualize the dispersing sample; rhodamine B was used as the fluorescent species. The pulsed flow enhanced the mixing of the solutions involved, thus reducing reagent consumption (48 and 96 μl for MPFS and MCFS), and improving sampling rate (67 and 144 h−1 for MCFS and MPFS). For phosphate determination, results obtained with both systems were precise (r.s.d. < 0.5%; n  = 10) and accurate. Analyses of the absorbance vs time/space LIF plots revealed that exploitation of pulsed flow led to a pronounced radial dispersion and to a limited axial dispersion, typical aspects of turbulent flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The expression stopped flow has also been used in relation to unsegmented flow systems where the sample zone is halted for a preselected period of time in order to increase the sample residence time without increasing dispersion.

References

  1. Hartridge H, Roughton FJW (1923) Roy Soc Proc A 104:376–394

    Article  Google Scholar 

  2. Chance B (2004) Photosynth Res 80:387–400

    Article  CAS  Google Scholar 

  3. Skeggs LT Jr (1957) Am J Clin Pathol 28:311–322

    CAS  Google Scholar 

  4. Ruzicka J, Hansen EH (1989) Flow injection analysis. Wiley-Interscience, New York

    Google Scholar 

  5. Ruzicka J, Marshall GD (1990) Anal Chim Acta 237:329–343

    Article  CAS  Google Scholar 

  6. Ruzicka J (2000) Analyst 125:1053–1060

    Article  CAS  Google Scholar 

  7. Cerda V, Estela JM, Forteza R, Cladera A, Becerra E, Altimira P, Sitjar P (1999) Talanta 50:695–705

    Article  CAS  Google Scholar 

  8. Francis PS, Lewis SW, Lim KF, Carlsson K, Karlberg B (2002) Talanta 58:1029–1042

    Article  CAS  Google Scholar 

  9. Korenaga T, Zhou X, Morlwake T, Muraki H, Nalto T, Sanuki S (1994) Anal Chem 66:73–78

    Article  CAS  Google Scholar 

  10. Wang XD, Cardwell TJ, Cattrall RW, Jenkins GE (1998) Anal Commun 35:97–101

    Article  CAS  Google Scholar 

  11. van Akker EB, Bos M, van der Linden WE (1999) Anal Chim Acta 378:111–117

    Article  Google Scholar 

  12. Lapa RAS, Lima JLFC, Reis BF, Santos JLM, Zagatto EAG (2002) Anal Chim Acta 466:125–132

    Article  CAS  Google Scholar 

  13. Santos JLM, Ribeiro MFT, Lima JLFC, Dias ACB, Zagatto EAG (2007) Spectrosc Lett 40:41–50

    Article  CAS  Google Scholar 

  14. Santos JLM, Ribeiro MFT, Dias ACB, Lima JLFC, Zagatto EAG (2007) Anal Chim Acta (in press)

  15. Quintella CM, Watanabe YN, Lima AMV, Korn M, Embiruçu M, Musse APS (2004) Anal Chim Acta 523:293–300

    Article  CAS  Google Scholar 

  16. Black CA, McLean EO (1965) Methods of soil analysis. American Society of Agronomy, Madison, WI

  17. Karlberg B, Pacey GE (1989) Flow injection analysis: a practical guide. Elsevier, Amsterdam

    Google Scholar 

  18. Dias ACB, Santos JLM, Lima JLFC, Zagatto EAG (2003) Anal Chim Acta 499:107–113

    Article  CAS  Google Scholar 

  19. Sommer L (1989) Analytical absorption spectrophotometry in the visible and ultraviolet; the principles. Elsevier, Amsterdam

    Google Scholar 

  20. Zagatto EAG, Jacintho AO, Reis BF, Krug FJ, Bergamin-Filho H, Pessenda LCR, Mortatti J, Gine MF (1981) Manual de análises de plantas e águas empregando sistemas de injeção em fluxo. CENA/USP, Piracicaba

  21. Ruzicka J, Hansen EH (1979) Anal Chim Acta 106:207–224

    Article  CAS  Google Scholar 

  22. Zagatto EAG, Bahia-Filho O, Gine MF, Bergamin-Filho H (1986) Anal Chim Acta 181:265–270

    Article  CAS  Google Scholar 

  23. Valcarcel M, Luque de Castro MD (1987) Flow injection analysis: principles and applications. Ellis Horwood, Chichester, UK

  24. Vanderslice JT, Stewart KK, Rosenfeld AG, Higgs DJ (1981) Talanta 28:11–18

    Article  CAS  Google Scholar 

  25. Wada H, Hiraoka S, Yuchi A, Nakagawa G (1986) Anal Chim Acta 179:181–188

    Article  CAS  Google Scholar 

  26. McBrady AD, Chantivas R, Torgerson AK, Grudpan K, Synovec RE (2006) Anal Chim Acta 575:151–158

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The FAPESP Foundation is thanked for the Ph.D. grant to ACBD. Partial support from CNPq/GRICES is also greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elias A. G. Zagatto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dias, A.C.B., Santos, J.L.M., Lima, J.L.F.C. et al. A critical comparison of analytical flow systems exploiting streamlined and pulsed flows. Anal Bioanal Chem 388, 1303–1310 (2007). https://doi.org/10.1007/s00216-007-1304-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1304-1

Keywords

Navigation