Skip to main content
Log in

Tunable design strategy for fluorescence probes based on 4-substituted BODIPY chromophore: improvement of highly sensitive fluorescence probe for nitric oxide

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) is a well-known fluorophore, with a high molar extinction coefficient and high fluorescence quantum efficiency (Φfl). Furthermore, its structure can be modified to change its excitation and emission wavelengths. However, little work has been done on the structural modification of fluorines at the B-4 position with other functional groups. We synthesized 4-methoxy-substituted BODIPY derivatives in satisfactory yields, and found that they exhibited improved solubility in aqueous solution. Moreover, their oxidation and reduction potentials were greatly decreased without any change in their absorbance and fluorescence properties. These features of 4-substituted BODIPYs may be useful for developing novel fluorescence probes based on the intramolecular photoinduced electron transfer (PeT) mechanism, because it is possible to optimize the PeT process precisely by modulating the electrochemical properties of the fluorophore. The value of this approach is exemplified by its application to the development of a highly sensitive and pH-independent fluorescence probe for nitric oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2a–b
Fig. 3a–b
Scheme 2
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Grynkiewicz G, Poenie M, Tsien RY (1985) J Biol Chem 260:3440–3450

    CAS  Google Scholar 

  2. Minta A, Kao JPY, Tsien RY (1989) J Biol Chem 264:8171–8178

    CAS  Google Scholar 

  3. Zalewski PD, Forbes IJ, Betts WH (1993) Biochem J 296:403–408

    CAS  Google Scholar 

  4. de Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE (1997) Chem Rev 97:1515–1566

    Article  Google Scholar 

  5. Tanaka K, Miura T, Umezawa N, Urano Y, Kikuchi K, Higuchi T, Nagano T (2001) J Am Chem Soc 123:2530–2536

    Article  CAS  Google Scholar 

  6. Kojima H, Nakatsubo N, Kikuchi K, Kawahara S, Kirino Y, Nagoshi H, Hirata Y, Nagano T (1998) Anal Chem 70:2446–2453

    Article  CAS  Google Scholar 

  7. Gabe Y, Urano Y, Kikuchi K, Kojima H, Nagano T (2004) J Am Chem Soc 126:3357–3367

    Article  CAS  Google Scholar 

  8. Ueno T, Urano Y, Setsukinai K, Takakusa H, Kojima H, Kikuchi K, Ohkubo K, Fukuzumi S, Nagano T (2004) J Am Chem Soc 126:14079–14085

    Article  CAS  Google Scholar 

  9. Urano Y, Kamiya M, Kanda K, Ueno T, Hirose K, Nagano T (2005) J Am Chem Soc 127:4888–4894

    Article  CAS  Google Scholar 

  10. Karolin J, Johansson LBA, Strandberg L, Ny T (1994) J Am Chem Soc 116:7801–7806

    Article  CAS  Google Scholar 

  11. Haugland RP (2005) The handbook: a guide to fluorescent probes and labeling technologies (10th edn). Molecular Probes Inc., Eugene, OR

  12. Burghart A, Kim H, Welch MB, Thoresen LH, Reibenspies J, Burgess K, Bergström F, Johansson LBA (1999) J Org Chem 64:7813–7819

    Article  CAS  Google Scholar 

  13. Chen J, Burghart A, Kovacs AD, Burgess K (2000) J Org Chem 65:2900–2906

    Article  CAS  Google Scholar 

  14. Rurack K, Kollmannsberger M, Daub J (2001) New J Chem 25:289–292

    Article  CAS  Google Scholar 

  15. Shen Z, Röhr H, Rurack K, Uno H, Spieles M, Schulz B, Reck G, Ono N (2004) Chem Eur J 10:4853–4871

    Article  CAS  Google Scholar 

  16. Kollmannsberger M, Rurack K, Resch-Genger U, Daub J (1998) J Phys Chem A 102:10211–10220

    Article  CAS  Google Scholar 

  17. Goze C, Ulrich G, Charbonnière L, Cesario M, Prangé T, Ziessel R (2003) Chem Eur J 9:3748–55

    Article  CAS  Google Scholar 

  18. Koutaka H, Kosuge J, Fukasaku N, Hirano T, Kikuchi K, Urano Y, Kojima H, Nagano T (2004) Chem Pharm Bull 52:700–703

    Article  CAS  Google Scholar 

  19. Baruah M, Qin W, Vallée RAL, Beljonne D, Rohand T, Dehaen W, Boens N (2005) Org Lett 7:4377–4380

    Article  CAS  Google Scholar 

  20. Wu Y, Peng X, Guo B, Fan J, Zhang Z, Wang J, Cui A, Gao Y (2005) Org Biomol Chem 3:1387–1392

    Article  CAS  Google Scholar 

  21. Yamada K, Nomura Y, Citterio D, Iwasawa N, Suzuki K (2005) J Am Chem Soc 127:6956–6957

    Article  CAS  Google Scholar 

  22. Coskun A, Akkaya EU (2005) J Am Chem Soc 127:10464–10465

    Article  CAS  Google Scholar 

  23. Wang P, Giese RW (1998) J Chromatogr A 809:211–218

    Article  CAS  Google Scholar 

  24. Kim H, Burghart A, Welch MB, Reibenspies J, Burgess K (1999) Chem Commun 1889–1890

  25. Ulrich G, Goze C, Guardigli M, Roda A, Ziessel R (2005) Angew Chem Int Ed 44:3694–3698

    Article  CAS  Google Scholar 

  26. Kee HL, Kirmaier C, Yu LH, Thamyongkit P, Youngblood WJ, Calder ME, Ramos L, Noll BC, Bocian DF, Scheidt WR, Birge RR, Lindsey JS, Holten D (2005) J Phys Chem B 109:20433–20443

    Article  CAS  Google Scholar 

  27. Hrabie JA, Klose JR, Wink DA, Keefer LK (1993) J Org Chem 58:1472–1476

    Article  CAS  Google Scholar 

  28. Paeker A, Rees WT (1960) Analyst 85:587–600

    Article  Google Scholar 

  29. Miura T, Urano Y, Tanaka K, Nagano T, Ohkubo K, Fukuzumi S (2003) J Am Chem Soc 125:8666–8671

    Article  CAS  Google Scholar 

  30. Rehm D, Weller A (1970) Isr J Chem 8:259–271

    CAS  Google Scholar 

  31. Palmer RMJ, Ferrige AG, Moncada S (1987) Nature 327:524–526

    Article  CAS  Google Scholar 

  32. Moncada S, Higgs AN (1993) Engl J Med 329:2002–2012

    Article  CAS  Google Scholar 

  33. Snyder SH, Bredt DS (1992) Sci Am 266:68–77

    Article  CAS  Google Scholar 

  34. Nathan C, Xie Q (1994) Cell 78:915–918

    Article  CAS  Google Scholar 

  35. Kojima H, Sakurai K, Kikuchi K, Kawahara S, Kirino Y, Nagoshi H, Hirata Y, Akaike T, Maeda H, Nagano T (1997) Biol Pharm Bull 20:1229–1232

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by a Grant-in-Aid for Creative Scientific Research (No. 13NP0401), research grants (Grant Nos. 14103018, 16651106, and 16689002 to Y.U.), and a grant for the Advanced and Innovational Research Program in Life Sciences to T.N. from the Ministry of Education, Culture, Sports, Science, and Technology of the Japanese Government, and a grant from the Kato Memorial Bioscience Foundation to Y.U.

Electronic supplementary material

Detailed descriptions of synthetic procedures for all compounds are given in the electronic supplementary material available online.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuo Nagano.

Additional information

Yu Gabe and Tasuku Ueno contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabe, Y., Ueno, T., Urano, Y. et al. Tunable design strategy for fluorescence probes based on 4-substituted BODIPY chromophore: improvement of highly sensitive fluorescence probe for nitric oxide. Anal Bioanal Chem 386, 621–626 (2006). https://doi.org/10.1007/s00216-006-0587-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0587-y

Keywords

Navigation