Skip to main content
Log in

Analysis of organic colouring and binding components in colour layer of art works

  • Special Issue Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Two methods of analysis of organic components of colour layers of art works have been tested: IR microspectroscopy of indigo, Cu-phthalocyanine, and Prussian blue, and MALDI-TOF-MS of proteinaceous binders and a protein-containing red dye. The IR spectra distortion common for smooth outer surfaces and polished cross sections of colour layer of art works is suppressed by reflectance measurement of microtome slices. The detection limit of the three blue pigments examined is ~0.3 wt% in reference colour layers in linseed oil binder with calcite as extender and lead white as a drying agent. The sensitivity has been sufficient to identify Prussian blue in repaints on a Gothic painting. MALDI-TOF-MS has been used to identify proteinaceous binders in two historical paintings, namely isinglass (fish glue) and rabbit glue. MALDI-TOF-MS has also been proposed for identification of an insect red dye, cochineal carmine, according to its specific protein component. The enzymatic cleavage with trypsin before MALDI-TOF-MS seems to be a very gentle and specific way of dissolution of the colour layers highly polymerised due to very long aging of old, e.g. medieval, samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Melessanaki K, Papadakis V, Balas C, Anglos D (2001) Spectrochim Acta B 56:2337–2346

    Google Scholar 

  2. Burgio L, Clark RJH, Theodoraki K (2003) Spectrochim Acta A 59:2371–2389

    Google Scholar 

  3. Burgio L, Clark RJH (2000) J Raman Spectrosc 31:395–401

    Google Scholar 

  4. Vandenabeele P, Wehling B, Moens L, Edwards H, De Reu M, Van Hooydonk G (2000) Anal Chim Acta 407:261–274

    Google Scholar 

  5. Ackacha MA, Połeć-Pawlak K, Jarosz M (2003) J Sep Sci 26:1028–1034

    Google Scholar 

  6. Puchalska M, Orlinska M, Ackacha MA, Połeć-Pawlak K, Jarosz M (2003) J Mass Spectrom 38:1252–1258

    Google Scholar 

  7. Maier MS, Parera SD, Seldes AM (2004) Int J Mass Spectrom 232:225–229

    Google Scholar 

  8. Kuckova S, Grygar T, Hradil T, Hradilova J (2003) J Solid State Electrochem 7:706–713

    Google Scholar 

  9. Novotna P, Pacakova V, Bosakova Z, Stulik K (1999) J Chromatogr A 863:235–241

    Google Scholar 

  10. Lang PL, Orna MV, Richwine LJ, Mathews TF, Nelson RS (1992) Microchem J 46:234–248

    Google Scholar 

  11. Van den Berg JDJ, Vermist ND, Carlyle L, Holcapek M, Boon JJ (2004) J Sep Sci 27:181–199

    Google Scholar 

  12. Spyros A, Anglos D (2004) Anal Chem 76:4929–4936

    Google Scholar 

  13. Keune K, Boon JJ (2004) Anal Chem 76:1374–1385

    Google Scholar 

  14. Pitthard V, Finch P, Bayerová T (2004) J Sep Sci 27:200–208

    Google Scholar 

  15. Regert M (2004) J Sep Sci 27:244–254

    Google Scholar 

  16. Colombini MP, Modungo F (2004) J Sep Sci 27:147–160

    Google Scholar 

  17. De la Cruz-Canizares J, Doménech-Carbó MT, Gimeno-Adelantado JV, Mateo-Castro R, Bosch-Reig F (2004) J Chromatogr A 1025:277–285

    Google Scholar 

  18. Carbini M, Stevanato R, Rovea M, Traldi P, Favretto D (1996) Rapid Commun Mass Spectrom 10:1240–1242

    Google Scholar 

  19. Chiavari G, Gandini N, Russo P, Fabbri D (1998) Chromatographia 47:420–426

    Google Scholar 

  20. Bonaduce I, Colombini MP (2003) Rapid Commun Mass Spectrom 17:2523–2527

    Google Scholar 

  21. Challinor JM (2001) J Anal Appl Pyrol 61:3–34

    Google Scholar 

  22. Mateo-Castro R, Gimeno-Adelantado JV, Bosch-Reig F, Doménech-Carbó A, Casas-Catalán MJ, Osete-Cortina L, De la Cruz-Canizares J, Doménech-Carbó MT (2001) Fresenius J Anal Chem 369:642–646

    Google Scholar 

  23. Makes F (1988) Enzymatic consolidation of the portrait of Rudolph II as “Vertumnus” by Giuseppe Arcimboldo with a new multi-enzyme preparation isolated from Antarctic krill (Euphausia superba), Acta Universitatis Gothoburgensis, Sweden

    Google Scholar 

  24. Beutel S, Klein K, Knobbe G, Königfeld P, Petersen K, Ulber R, Scheper T (2002) Biotechnol Bioeng 80:13–21

    Google Scholar 

  25. Hynek R, Kuckova S, Hradilova J, Kodicek M (2004) Rapid Commun Mass Spectrom 18:1–5

    Google Scholar 

  26. Ma Y, Lu Y, Zeng H, Ron D, Mo W, Neubert TA (2001) Rapid Commun Mass Spectrom 15:1693–1700

    Google Scholar 

  27. Berrie HB (1997) Prussian blue. In: Fitzhugh EW (ed) Artist’s pigments, a handbook of their history and characteristics, chap. 7, vol 3. National Gallery of Art, New York, pp 191–217

  28. Newman R (1979) JAIC 19:42–62

    Google Scholar 

Download references

Acknowledgements

The work was supported by Grant Agency of Czech Republic (project number 203/04/2091). We thank to restorers K. Stretti, D. Frank, and J. Hamsík (Academy of Fine Arts in Prague, Czech Republic) for providing samples, Tatyana Bayerova (University of Applied Arts, Vienna, Austria), for an inspiring discussion about IR spectroscopy in artwork analysis, and Ladislava Kratinova and Jindrich Martinek (First Faculty of Medicine, Charles University, Prague, Czech Republic) for cutting thin layers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kuckova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuckova, S., Nemec, I., Hynek, R. et al. Analysis of organic colouring and binding components in colour layer of art works. Anal Bioanal Chem 382, 275–282 (2005). https://doi.org/10.1007/s00216-005-3108-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-3108-5

Keywords

Navigation