Skip to main content
Log in

Identification of natural dyes used in works of art by pyrolysis–gas chromatography/mass spectrometry combined with in situ trimethylsilylation

  • Special Issue Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Samples of four natural dyes from different organic families—natural madder (anthraquinonoid), curcuma (curcuminoid), saffron (carotenoid) and indigo (indigotic)—were analysed using a new procedure based on pyrolysis–gas chromatography/mass spectrometry (Py–GC/MS), which includes the on-line derivatisation of the natural dyes using hexamethyldisilazane (HMDS). In addition, a previous procedure involving the addition of a 10% H2SO4 aqueous solution to the dye and further separation with ethyl acetate has been tested. This procedure enhances the sensitivity of the method by extracting the colouring compounds from the rest of the compounds present in the natural dye. Two possible derivatising reagents—HMDS and tetramethylammonium hydroxide (TMAH)—were compared in order to assess their effectiveness in the proposed method. Characteristic peaks from trimethylsilyl derivatives of alizarin, quinizarin, xanthopurpurin and purpurin were obtained for madder; peaks from safranal, isophorone and trimethylsilyl derivative of crocetin for saffron; peaks from 4-(4-hydroxy-3-methoxy)phenyl-3-buten-2-one and 4-(4-hydroxy-3-methoxy)phenyl-2-butanone, which are primary pyrolysis products of curcuma, and peaks from indole, 2-methylindole and 2,3-dihydroindol-2-one, which are primary pyrolysis products of indigo, among others, were obtained. The reported procedure leads to the unambiguous identification of the four studied dyes from solid samples formed by individual dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c

Similar content being viewed by others

References

  1. Low MJD, Baer NS (1977) Stud Conserv 22:116–128

    Google Scholar 

  2. Shearer JC, Peters DC, Hoepfner DC, Newton T (1983) Anal Chem 55:874A–880A

    Google Scholar 

  3. Taylor GW (1983) Stud Conserv 28:153–160

    Google Scholar 

  4. Edwards HGM, Farwell DW, Quye AJ (1997) Raman Spectrosc 28:243–249

    Google Scholar 

  5. Bell SEJ, Bourguignon ESO, Dennis AC, Fields JA, McGarvey JJ, Seddon KR (1999) Anal Chem 72:234–239

    Google Scholar 

  6. Edwards HGM, De Oliveira LFC, Nesbitt M (2003) Analyst 128:82–87

    Google Scholar 

  7. Vandenabeele P, Moens L (2003) Analyst 128:187–193

    Google Scholar 

  8. Guichard V, Guineau B (1990) Identification de colorants organiques naturels dans des fragments de peintures murales de l’Antiquité. CNRS, Paris

    Google Scholar 

  9. Miliani C, Romani A, Favaro G (1998) Spectrochim Acta A 54A:581–588

    Google Scholar 

  10. Doménech-Carbó A, Doménech-Carbó MT, Sauri-Peris MC, Gimeno-Adelantado JV, Bosch-Reig F (2003) Anal Bioanal Chem 375:1169–1175

    Google Scholar 

  11. Grygar T, Kucková S, Hradil D, Hradilová D (2003) J Solid State Electrochem 7:706–713

    Google Scholar 

  12. Scott DA, Khandekar N, Schilling MR, Turner N, Taniguchi Y, Khanjian H (2001) Stud Conserv 43:93–108

    Google Scholar 

  13. Hofenk de Graaff JH, Roelofs WGTh (1990) Natural dyestuffs; history of technology and scientific research. In: Pigments and dyes of antiquity and the Middle Ages. CNRS, Paris, pp 217–226

  14. Nowik W (1996) Analusis 24:37–40

    Google Scholar 

  15. Orska-Gawrys J, Surowiec I, Kehl J, Rejniak H, Urbaniak-Walczak K, Trojanowicz M (2003) J Chromatogr A 989:239–248

    Google Scholar 

  16. Szostek B, Orska-Gawrys J, Surowiec I, Trojanowicz M (2003) J Chromatogr A 1012:179–192

    Google Scholar 

  17. Puchalska M, Orlinska M, Ackacha MA, Polec-Pawlak K, Jarosz M (2003) J Mass Spectrom 38:1252–1258

    Google Scholar 

  18. Ackacha MA, Polec-Pawlak K, Jarosz M (2003) J Sep Sci 26:1028–1034

    Google Scholar 

  19. Quye A, Wouters J, Boon JJ (1998) Preprints of 11th Triennial Meeting of ICOM Committee for Conservation, 1–6 September 1996, Edinburgh, UK, vol 2, pp 704–713

  20. Henriksen LM, Kjøsen H (1983) J Chromatogr 258:252–257

    Google Scholar 

  21. Fabbri D, Chiavari G, Ling H (2000) J Anal Appl Pyrol 56:167–178

    Google Scholar 

  22. Chiavari G, Fabbri D, Prati S (2001) J Chromatogr A 922:235–241

    Google Scholar 

  23. Chiavari G, Fabbri D, Prati S (2001) Chromatographia 53:311–314

    Google Scholar 

  24. Chiavari G, Fabbri D, Prati S (2001) Anal Chim Acta 449:271–280

    Google Scholar 

  25. Prati S, Smith S, Chiavari G (2004) Chromatographia 59:227–231

    Google Scholar 

  26. Gettens RJ, Stout GL (1966) Painting materials. a short encyclopedia. Dover Publications Inc., New York

    Google Scholar 

  27. Matteini M, Moles A (1989) La Chimica nel Restauro. I materiali dell’arte pittorica. Nardini, Firenze

    Google Scholar 

  28. Cennini C (1988) El libro del arte. Akal, Madrid

    Google Scholar 

  29. Mills JS, White R (1987) The organic chemistry of museum objects. Butterworths, London

  30. Bender M (1947) J Chem Educ 24:2–15

    Google Scholar 

  31. Hiscox GD, Hopkins AA (1997) El recetario industrial G. Gili, México

    Google Scholar 

  32. Mayer R (1993) The artist’s handbook of materials and techniques, 2nd edn. Hermann Blume, Madrid

    Google Scholar 

  33. Palomino A (1947) El museo pictórico y escala óptica. Aguilar, Madrid

    Google Scholar 

  34. Leonardo da Vinci (1995) Tratado de Pintura, 3rd edn. Akal, Madrid, pp 426–429

    Google Scholar 

  35. Turco A (1996) Coloritura, verniciatura e laccatura del legno. 3rd edn. Hoepli, Milano

    Google Scholar 

  36. Lampe V, Milobedzka J (1913) Ber Dtsch Chem Ges 46:2235; cited by Roughley PJ, Whiting DA (1971) Tetrahedron Lett 12:3471–3746

    Google Scholar 

  37. Kiuchi F, Goto Y, Sugimoto N, Akao N, Kondo K, Tsuda Y (1993) Chem Pharm Bull 41:1640–1643

    Google Scholar 

  38. Kelkar NC, Sanjeev Rao B (1933) J Indian I Sci A 17A:7–15

    Google Scholar 

  39. Tarantilis PA, Polissiou M, Manfait M (1994) J Chromatogr 664:55–61

    Google Scholar 

  40. Iborra JL, Castellar MR, Canovas M, Manjón AJ (1992) Food Sci 57:714–716

    Google Scholar 

  41. Himeno H, Sano K (1987) Agr Biol Chem 51:2395–2400

    Google Scholar 

  42. Castellar MR, Montijano H, Manjón A, Iborra JL (1993) J Chromatogr 648:187–190

    Google Scholar 

  43. Tarantilis PA, Tsoupras G, Polissiou M (1995) J Chromatogr 699:107–118

    Google Scholar 

  44. Kuroda KI (2000) J Appl Pyrol 56:79–87

    Google Scholar 

  45. Tarantilis PA, Polissiou MG (1997) J Agr Food Chem 45:459–462

    Google Scholar 

  46. De Leeuw J, Baas M (1993) J Appl Pyrol 26:175–184

    Google Scholar 

  47. Tegelaar EW, De Leeuw J, Holloway PJ (1989) J Appl Pyrol 15:289–295

    Google Scholar 

Download references

Acknowledgements

Financial support is gratefully acknowledged from the “I+D+I MCYT” Project BQU2001-2776-C03-01 and “Generalitat Valenciana I+D” Project GV04B-441.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Teresa Doménech-Carbó.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casas-Catalán, M.J., Doménech-Carbó, M.T. Identification of natural dyes used in works of art by pyrolysis–gas chromatography/mass spectrometry combined with in situ trimethylsilylation. Anal Bioanal Chem 382, 259–268 (2005). https://doi.org/10.1007/s00216-005-3064-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-3064-0

Keywords

Navigation