Skip to main content

Advertisement

Log in

Development of an on-line automated sample clean-up method and liquid chromatography–tandem mass spectrometry analysis: application in an in vitro proteolytic assay

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Fluorescence detection has been a method of choice in industry for screening assays, including identification of enzyme inhibitors, owing to its high-throughput capabilities, excellent reproducibility, and sensitivity. Occasionally, inhibitors are identified that challenge the fluorescence assay limit, necessitating the development of more sensitive detection methods to assess these compounds. For data mining purposes, however, original assay conditions may be required. A direct method transfer to highly sensitive and specific LC-MS-based methods has not always been possible due to the presence of MS-incompatible neutral detergents and non-volatile salts in the assay matrix. Utilizing an in vitro proteolytic screening assay for the serine protease hepatitis C virus (HCV) nonstructural (NS) 3 protease as a test case, we report the development of an automated sample clean-up procedure implemented on-line with liquid chromatography–tandem mass spectrometry (LC-MS/MS) analysis to complement fluorescence detection. Ion exchange and peptide microtraps were employed to remove MS-incompatible assay matrix components. Three protease inhibitors were used to validate the MS/MS method. Comparable potencies were achieved for these compounds when assessed by fluorescence and MS/MS detection. Furthermore, four-fold less enzyme could be utilized when employing the MS/MS method compared to fluorescence detection. The longer analysis time, however, resulted in reduced sample capacity. The potency of our designed HCV NS3 protease inhibitors are thus routinely evaluated using a continuous fluorescence-based assay. Only pertinent inhibitors approaching the fluorescence assay sensitivity limit are subsequently analyzed further by LC-MS/MS. This methodology allows us to maintain a database and to compare results independent of the detection method. Despite the relatively slow sample turnaround time of this LC-MS approach, the versatility of the automated on-line clean-up procedure and sample analysis can be applied to assays containing reagents which were historically considered to be MS incompatible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kraut J (1977) Annu Rev Biochem 46:331–358

    Article  PubMed  CAS  Google Scholar 

  2. Sarath G, De La Motte RS, Wagner FW (1989) Proteolytic enzymes: a practical approach. In Beynon RJ, Bond JS (eds) IRL Press, Oxford, UK, pp 25–55

    Google Scholar 

  3. Hellen C (1994) Methods Enzymol 241:46–58

    Article  Google Scholar 

  4. Rust L, Messing CR, Iglewski BH (1994) Methods Enzymol 235:554–562

    PubMed  CAS  Google Scholar 

  5. Grant SK, Sklar JG, Cummings RT (2002) J Biomol Screen 7:531–540

    Article  PubMed  CAS  Google Scholar 

  6. Nikiforov TT, Simeonov AM (2003) Comb Chem High T Scr 6:201–212

    CAS  Google Scholar 

  7. Newman M, Josiah S (2004) J Biomol Screen 9:525–532

    Article  PubMed  CAS  Google Scholar 

  8. van Elswijk DA, Diefenbach O, van der Berg S, Irth H, Tjaden UR, van der Greef J (2003) J Chromatogr A 1020:45–58

    Article  PubMed  CAS  Google Scholar 

  9. de Boer AR, Letzel T, van Elswijk DA, Lingeman H, Niessen WMA, Irth H (2004) Anal Chem 76:3155–3161

    Article  PubMed  CAS  Google Scholar 

  10. Schenk T, Appels NMGM, van Elswijk DA, Irth H, Tjaden UR, van der Greef J (2003) Anal Biochem 316:118–126

    Article  PubMed  CAS  Google Scholar 

  11. Liesener A, Karst U (2005) Analyst 130:850–854

    Article  PubMed  CAS  Google Scholar 

  12. Schlueter H, Jankowski J, Rykl J, Thiemann J, Belgardt S, Zidek W, Wittmann B, Pohl T (2003) Anal Bioanal Chem 377:1102–1107

    Article  CAS  Google Scholar 

  13. Liesener A, Karst U (2005) Anal Bioanal Chem 382:1451–1464

    Article  PubMed  CAS  Google Scholar 

  14. Ohbayashi H (2002) Expert Opin Invest Drugs 11:965–980

    Article  CAS  Google Scholar 

  15. Hauptmann J (2002) Eur J Clin Pharmacol 57:751–758

    Article  PubMed  CAS  Google Scholar 

  16. Kaiser B (2002) Cell Mol Life Sci 59:189–192

    Article  PubMed  CAS  Google Scholar 

  17. McPhee F, Yeung K-S, Good AC, Meanwell NA (2003) Drug Future 28:465–488

    Article  CAS  Google Scholar 

  18. Taliani M, Bianchi E, Narjes F, Fossatelli M, Urbani A, Steinkuehler C, De Francesco R, Pessi A (1996) Anal Biochem 240:60–67

    Article  PubMed  CAS  Google Scholar 

  19. Griffiths WJ, Jonsson AP, Liu S, Rai DK, Wang Y (2001) Biochem J 355:545–561

    PubMed  CAS  Google Scholar 

  20. Shen T-L, Noon KR (2004) Methods Mol Biol 251:111–139

    PubMed  CAS  Google Scholar 

  21. Loo JA, Kilby GW (2002) Pract Spectrosc 32:251–281

    CAS  Google Scholar 

  22. Trauger SA, Webb W, Siuzdak G (2002) Spectroscopy 16:15–28

    CAS  Google Scholar 

  23. John H, Walden M, Schafer S, Genz S, Forssmann W-G (2004) Anal Bioanal Chem 378:883–897

    Article  PubMed  CAS  Google Scholar 

  24. Bischoff R (2003) Anal Bioanal Chem 376:289–291

    PubMed  CAS  Google Scholar 

  25. Steen H, Mann M (2004) Nat Rev Mol Cell Biol 5:699–711

    Article  PubMed  CAS  Google Scholar 

  26. Lill J (2003) Mass Spectrom Rev 22:182–194

    Article  PubMed  CAS  Google Scholar 

  27. Ashcroft AE (2003) Nat Prod Rep 20:202–215

    Article  PubMed  CAS  Google Scholar 

  28. Swiderek KM, Alpert AJ, Heckendorf A, Nugent K, Patterson SD (1997) in Tricks of the Trade. ABRF News 8, http://www.abrf.org/ABRFNews/1997/December1997/dec97detergent.html

  29. Souverain S, Rudaz S, Veuthey J-L (2004) J Chromatogr A 1058:61–66

    Article  PubMed  CAS  Google Scholar 

  30. James CA, Breda M, Frigerio E, Long J, Munesada K (2002) Chromatographia Suppl 55:S41–S43

    Article  CAS  Google Scholar 

  31. Hopfgartner G, Bourgogne E (2003) Mass Spectrom Rev 22:195–214

    Article  PubMed  CAS  Google Scholar 

  32. van Hout MWJ, Niederlander HAG, de Zeeuw RA, de Jong GJ, pp 1–44 in Wilson ID (2003) (ed) Handbook of Analytical Separations, Bioanalytical Separations, 4 (Bioanalytical Separations). Elsevier Science, New York, NY, USA

    Google Scholar 

  33. Souverain S, Rudaz S, Veuthey J-L (2004) J Chromatogr B: Anal Technol Biomed Life Sci 801:141–156

    Article  CAS  Google Scholar 

  34. Stoney K, Nugent K (1994) in Proceedings of the 42nd ASMS Conference on Mass Spectrometry and Allied Topics, p 630

  35. Nugent K, Scott W, Carrier M (1998) ABRF’98, San Diego, CA, March 21–24

    Google Scholar 

  36. Gustavsson SA, Samskog J, Markides KE, Langstroem B (2001) J Chromatogr A 937:41–47

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Leap Technologies, Carrboro, NC and Michrom Bioresources, Inc., Auburn, CA for their assistance in the programming of the switching valve procedures and in setting up the conditions for the microtraps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Drexler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drexler, D., Barlow, D.J., Falk, P. et al. Development of an on-line automated sample clean-up method and liquid chromatography–tandem mass spectrometry analysis: application in an in vitro proteolytic assay. Anal Bioanal Chem 384, 1145–1154 (2006). https://doi.org/10.1007/s00216-005-0263-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-0263-7

Keywords

Navigation