Skip to main content

Urine Sample Preparation in 96-well Filter Plates to Characterize Inflammatory and Infectious Diseases of the Urinary Tract

  • Chapter
  • First Online:
Urine Proteomics in Kidney Disease Biomarker Discovery

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 845))

Abstract

Urine has been an important body fluid source for diagnostic and prognostic biomarkers of diseases for a long time. Technological advances during the last two decades have enabled a fundamental shift from the discovery of candidate protein biomarkers using single-assay platforms to highly parallel liquid chromatography tandem mass spectrometry (LC-MS/MS)-based proteomic analysis platforms. MS/MS-based approaches such as multiple reaction monitoring (MRM) are also being used increasingly for targeted protein biomarker validation. In large part due to the fact that the majority of protein in voided urine is soluble, such studies have focused on the analysis of urine supernatants, whereas the pellets were discarded after centrifugal sedimentation. Urine sediments are of particular value in the analysis of urinary tract infections (UTI). The LC-MS/MS methods now have sufficient resolving power and sensitivity to survey metaproteomes—the entirety of proteins derived from multiple organisms that interact with each other in mutualistic or antagonistic fashion. Challenges of proteomic analysis of urine include the high dynamic range of protein abundance, high levels of protein post-translational modifications, and high quantities of natural protease inhibitors. Recently, a robust and scalable workflow that can parallelize the processing of multiple urinary supernatant and sediment samples was developed and validated in our lab. This method utilizes 96-well format filter-aided sample preparation (96FASP) strategy and was shown to successfully identify large numbers of proteins from urine samples. Processing 10–50 µg total protein in single experiment, LC-MS/MS with a Q-Exactive mass spectrometer resulted in more than 1,100 distinct human protein identifications from urine supernatants, and around 400 microbial and 1,400 human protein identifications from urine sediments. The surveys are a rich data resource not only for biomarker discovery but also to interrogate mechanisms of pathogenesis in the urinary system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adachi J, Kumar C, Zhang Y, Olsen J, Mann M (2006) The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins. Genome Biol 7(9):R80. doi:10.1186/gb-2006-7-9-r80

    Article  PubMed  PubMed Central  Google Scholar 

  2. Carty DM, Siwy J, Brennand JE, Zürbig P, Mullen W, Franke J, McCulloch JW, North RA, Chappell LC, Mischak H, Poston L, Dominiczak AF, Delles C (2011) Urinary proteomics for prediction of preeclampsia. Hypertension 57(3):561–569. doi:10.1161/hypertensionaha.110.164285

    Article  PubMed  CAS  Google Scholar 

  3. Decramer S, de Peredo AG, Breuil B, Mischak H, Monsarrat B, Bascands J-L, Schanstra JP (2008) Urine in clinical proteomics. Mol Cell Proteomics 7(10):1850–1862. doi:10.1074/mcp.R800001-MCP200

    Article  PubMed  CAS  Google Scholar 

  4. Fouts D, Pieper R, Szpakowski S, Pohl H, Knoblach S, Suh M-J, Huang S-T, Ljungberg I, Sprague B, Lucas S, Torralba M, Nelson K, Groah S (2012) Integrated next-generation sequencing of 16S rDNA and metaproteomics differentiate the healthy urine microbiome from asymptomatic bacteriuria in neuropathic bladder associated with spinal cord injury. J Transl Med 10(1):174. doi:10.1186/1479-5876-10-174

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Kentsis A, Lin YY, Kurek K, Calicchio M, Wang YY, Monigatti F, Campagne F, Lee R, Horwitz B, Steen H, Bachur R (2010) Discovery and validation of urine markers of acute pediatric appendicitis using high-accuracy mass spectrometry. Ann Emerg Med 55(1):62–70.e64. http://dx.doi.org/10.1016/j.annemergmed.2009.04.020

  6. Kentsis A, Monigatti F, Dorff K, Campagne F, Bachur R, Steen H (2009) Urine proteomics for profiling of human disease using high accuracy mass spectrometry. Proteom Clin Appl 3(9):1052–1061. doi:10.1002/prca.200900008

    Article  CAS  Google Scholar 

  7. Kentsis A, Shulman A, Ahmed S, Brennan E, Monuteaux MC, Lee Y-H, Lipsett S, Paulo JA, Dedeoglu F, Fuhlbrigge R, Bachur R, Bradwin G, Arditi M, Sundel RP, Newburger JW, Steen H, Kim S (2013) Urine proteomics for discovery of improved diagnostic markers of Kawasaki disease. EMBO Mol Med 5(2):210–220. doi:10.1002/emmm.201201494

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Manza LL, Stamer SL, Ham A-JL, Codreanu SG, Liebler DC (2005) Sample preparation and digestion for proteomic analyses using spin filters. Proteomics 5(7):1742–1745. doi:10.1002/pmic.200401063

    Article  PubMed  CAS  Google Scholar 

  9. Marimuthu A, O’Meally RN, Chaerkady R, Subbannayya Y, Nanjappa V, Kumar P, Kelkar DS, Pinto SM, Sharma R, Renuse S, Goel R, Christopher R, Delanghe B, Cole RN, Harsha HC, Pandey A (2011) A comprehensive map of the human urinary proteome. J Proteome Res 10(6):2734–2743. doi:10.1021/pr2003038

    Article  PubMed  CAS  Google Scholar 

  10. Mataija-Botelho D, Murphy P, Pinto DM, MacLellan DL, Langlois C, Doucette AA (2009) A qualitative proteome investigation of the sediment portion of human urine: implications in the biomarker discovery process. PROTEOMICS—Clin Appl 3(1):95–105. doi:10.1002/prca.200800019

  11. Nagaraj N, Mann M (2010) Quantitative analysis of the intra- and inter-individual variability of the normal urinary proteome. J Proteome Res 10(2):637–645. doi:10.1021/pr100835s

    Article  Google Scholar 

  12. Nielubowicz GR, Mobley HLT (2010) Host-pathogen interactions in urinary tract infection. Nat Rev Urol 7(8):430–441. doi:10.1038/nrurol.2010.101

    Article  PubMed  CAS  Google Scholar 

  13. Pisitkun T, Shen R-F, Knepper MA (2004) Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci USA 101(36):13368–13373. doi:10.1073/pnas.0403453101

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2(8):1896–1906. doi:10.1038/nprot.2007.261

    Article  PubMed  CAS  Google Scholar 

  15. Schmiemann G, Kniehl E, Gebhardt K, Matejczyk MM, Hummers-Pradier E (2010) The diagnosis of urinary tract infection: a systematic review. Dtsch Arztebl Int 107(21):361–367. doi:10.3238/arztebl.2010.0361

    PubMed  PubMed Central  Google Scholar 

  16. Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2007) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1(6):2856–2860. doi:10.1038/nprot.2006.468

    Article  Google Scholar 

  17. Switzar L, van Angeren J, Pinkse M, Kool J, Niessen WMA (2013) A high-throughput sample preparation method for cellular proteomics using 96-well filter plates. Proteomics 13(20):2980–2983. doi:10.1002/pmic.201300080

    PubMed  CAS  Google Scholar 

  18. Weichhart T, Haidinger M, Hörl WH, Säemann MD (2008) Current concepts of molecular defence mechanisms operative during urinary tract infection. Eur J Clin Invest 38:29–38. doi:10.1111/j.1365-2362.2008.02006.x

    Article  PubMed  CAS  Google Scholar 

  19. Wiśniewski JR, Zougman A, Mann M (2009) Combination of FASP and StageTip-based fractionation allows in-depth analysis of the hippocampal membrane proteome. J Proteome Res 8(12):5674–5678. doi:10.1021/pr900748n

    Article  PubMed  Google Scholar 

  20. Yu Y, Suh M-J, Sikorski P, Kwon K, Nelson KE, Pieper R (2014) Urine sample preparation in 96-well filter plates for quantitative clinical proteomics. Anal Chem 86(11):5470–5477. doi:10.1021/ac5008317

  21. Zimmerli LU, Schiffer E, Zürbig P, Good DM, Kellmann M, Mouls L, Pitt AR, Coon JJ, Schmieder RE, Peter KH, Mischak H, Kolch W, Delles C, Dominiczak AF (2008) Urinary proteomic biomarkers in coronary artery disease. Mol Cell Proteomics 7(2):290–298. doi:10.1074/mcp.M700394-MCP200

    Article  PubMed  CAS  Google Scholar 

  22. Yu Y, Smith M, Pieper R (2014) A spinnable and automatable StageTip for high throughput peptide desalting and proteomics. Protocol Exchange. doi:10.1038/protex.2014.033

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanbao Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yu, Y., Pieper, R. (2015). Urine Sample Preparation in 96-well Filter Plates to Characterize Inflammatory and Infectious Diseases of the Urinary Tract. In: Gao, Y. (eds) Urine Proteomics in Kidney Disease Biomarker Discovery. Advances in Experimental Medicine and Biology, vol 845. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9523-4_8

Download citation

Publish with us

Policies and ethics