Skip to main content

Advertisement

Log in

Speciation analysis of calcium, iron, and zinc in casein phosphopeptide fractions from toddler milk-based formula by anion exchange and reversed-phase high-performance liquid chromatography–mass spectrometry/flame atomic-absorption spectroscopy

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Casein phosphopeptides (CPP) are phosphorylated casein-derived peptides that can be released by in-vitro or in-vivo enzymatic hydrolysis of αs1-casein, αs2-casein, and β-casein (CN). Many of these peptides contain a highly polar acidic sequence of three phosphoseryl groups followed by two glutamic acid residues. These domains are binding sites for minerals such as calcium, iron, and zinc and play an important role in mineral bioavailability. The aim of this study was speciation analysis of calcium, iron, and zinc in CPP fractions from the soluble fraction of a toddler milk-based formula. Methods for CPP separation by anion-exchange high-performance liquid chromatography (AE-HPLC) were combined with CPP identification by reversed-phase high performance liquid chromatography–electrospray ionization mass spectrometry and determination of the calcium, iron, zinc, and phosphorus content of the fractions obtained by AE-HPLC. Calcium and phosphorus were detected in all the analyzed AE-HPLC fractions. Calcium and zinc could be bound to CPP derived from αs1-CN and αs2-CN in fraction 3. Iron could be bound to CPP in fraction 4 in which β-CN(15-34)4P was present with the cluster sequence S(P)S(P)S(P)EE. The results obtained prove the different distribution of calcium, iron, and zinc in heterogeneous CPP fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fitzgerald RJ (1998) Int Dairy J 8:451–457

    Article  CAS  Google Scholar 

  2. Kitts DD, Weiler K (2003) Curr Pharm Design 9:1309–1323

    Google Scholar 

  3. Clare DA, Swaisgood HE (2000) J Dairy Sci 83:1187–1195

    Google Scholar 

  4. Korhonen H, Pihlanto-Leppälä A (2001) Bull IDF 363:17–26

    Google Scholar 

  5. Meisel H, Fitzgerald RJ (2003) Curr Pharm Des 9:1289–1295

    Google Scholar 

  6. Ferraretto A, Gravaghi C, Fiorilli A, Tettamanti G (2003) FEBS Lett 551:92–98

    Article  Google Scholar 

  7. Leonil J, Molle D, Maubois JL (1988) Lait 68(3):281–294

    Google Scholar 

  8. Juillerat MA, Baechler R, Berrocal R, Chanton S, Scherz JC, Jost R (1989) J Dairy Res 56:603–611

    CAS  Google Scholar 

  9. Bouhallab S, Cinga V, Aït-oukhatar N, Bureau F, Neuville D, Arhan P, Maubois JL, Bouglé D (2002) J Agric Food Chem 50:7127–7130

    Article  Google Scholar 

  10. Touraine F, Brulé G, Maubois JL (1987) Lait 67(4):419–436

    Google Scholar 

  11. Lemieux L, Amiot J, Piot JM, Guillochon D (1997) Anal Chim Acta 352:399–409

    Article  Google Scholar 

  12. Aoki T, Nakano T, Iwashita T, Sugimoto Y, Ibrahim HR, Toba Y, Aoe S, Nakajima I (1998) J Nutr Sci Vitaminol 44:447–456

    Google Scholar 

  13. Meisel H, Frister H (1989) J Dairy Res 56:343–349

    Google Scholar 

  14. Meisel H, Frister H, Schlimme E (1989) Z Ernahrungswiss 28:267–278

    Google Scholar 

  15. Scanff P, Yvon M, Pelissier JP (1991) J Chromatogr A 539:425–432

    Article  Google Scholar 

  16. Posewitz MC, Tempst P (1999) Anal Chem 71:2883–2892

    Article  Google Scholar 

  17. Ohguro H, Palczeswski K (1995) FEBS Lett 368:452–454

    Article  Google Scholar 

  18. Gaucheron F, Mollé D, Léonil J, Maubois JL (1995) J Chromatogr B 664:193–200

    Google Scholar 

  19. Gagnaire V, Pierre A, Molle D, Leonil J (1996) J Dairy Res 63:405–422

    Google Scholar 

  20. Ellegard KH, Gammelgard-Larsen C, Sorensen E, Fedosov S (1999) Int Dairy J 9:639–652

    Article  Google Scholar 

  21. Tauzin J, Miclo L, Roth S, Mollé D, Gaillard JL (2003) Int Dairy J 13:15–27

    Article  Google Scholar 

  22. Léonil J, Gagnaire V, Mollé D, Pezennec S, Bouhallab S (2000) J Chromatogr A 881:1–21

    Article  Google Scholar 

  23. Sanz-Medel A, Montes-Bayón M, Fernández-Sánchez ML (2003) Anal Bioanal Chem 377:236–247

    Article  CAS  PubMed  Google Scholar 

  24. Szpunar J (2000) Analyst 125:963–988

    Article  CAS  PubMed  Google Scholar 

  25. Gaucheron F, Famelart MH, Le Graët Y (1996) J Dairy Res 63:233–243

    Google Scholar 

  26. Bermejo P, Peña E, Domínguez R, Bermejo A, Fraga JM, Cocho JA (2000) Talanta 50:1211--1222

    Article  Google Scholar 

  27. Bermejo P, Peña EM, Fompedriña D, Domínguez R, Bermejo A (2001) J AOAC Int 84(3):847–851

    Google Scholar 

  28. Bräter P, Navarro I, Negretti de Bräter V, Raab A (1998) Analyst 123:821–826

    Article  Google Scholar 

  29. Jovaní M, Barberá R, Farré R, Martín de Aguilera E (2001) J Agric Food Chem 49:3480–3485

    Article  PubMed  Google Scholar 

  30. Miquel E, Alegria A, Barberá R, Farré R (2004) Eur Food Res Technol 219:639–642

    Article  Google Scholar 

  31. García R, Alegría A, Barberá R, Farré R, Lagarda MJ (1998) Biol Trace Elem Res 65:7–17

    Google Scholar 

  32. Roig MJ, Alegría A, Barberá R, Farré R, Lagarda MJ (1999) Food Chem 64:403–409

    Article  CAS  Google Scholar 

  33. Barberá R, Farré R, Lozano AJ (1989) J Micronutr Anal 6:47–57

    Google Scholar 

  34. Ruiz C, Alegria R, Barberá R, Farré R, Lagarda MJ (1995) Nahrung 39:497–504

    Google Scholar 

  35. Allen G (1989) Sequencing of proteins and peptides Laboratory techniques in biochemistry and molecular biology, vol 9. Elsevier, Amsterdam

  36. Adamson NJ, Reynolds EC (1995) J Dairy Sci 78:2653–2659

    Google Scholar 

  37. Bouhallab S, Léonil J, Maubois JL (1991) Lait 71:435–443

    Google Scholar 

  38. Campagna S, Cosette P, Molle G, Gaillard JL (2001) Biochim Biophys Acta 1513:217–222

    Google Scholar 

  39. Girardet JM, Linden G (1996) J Dairy Res 63:333–350

    Google Scholar 

  40. Park H, Swaisgood E, Allen JC (1998) J Dairy Res 81:2850–2857

    Google Scholar 

  41. Lee YS, Noguchi T, Naito H (1980) Br J Nutr 43:457–467

    Google Scholar 

  42. Reynolds EC (1993) Phosphopeptides for the treatment of dental calculus. World Patent WO 93/03707

  43. Schlimme E, Meisel H (1995) Nahrung 39:1–20

    Google Scholar 

  44. Meisel H, Olieman C (1988) Anal Chim Acta 372:291–297

    Article  Google Scholar 

  45. Martell AE, Smith RM (eds) (1974) Critical stability constants, vol 1. Plenum Press, New York

    Google Scholar 

  46. Gaucheron F, Le Graet Y, Boyaval E, Piot M (1997) Milchwissenchaft 52:322–327

    Google Scholar 

  47. Aït-oukhatar N, Bouhallab S, Arhan P, Maubois JL, Drosdowsky M, Bouglé D (1999) J Agric Food Chem 47:2786–2790

    Article  Google Scholar 

  48. Aït-oukhatar N, Bouhallab S, Bureau F, Arhan P, Maubois JL, Drosdowsky MA, Bouglé DL (1997) J Nutr Biochem 8:190–194

    Article  Google Scholar 

  49. Smith RM, Martell AE (eds) (1989) Critical stability constants, vol 6. Plenum Press, New York

    Google Scholar 

Download references

Acknowledgements

This study is part of the project AGL2000-1483 financially supported by the FEDER/CICYT (Spain). We thank Hero S.A. (Murcia, Spain) for providing the samples and for financial support of this study. Thanks also to Generalitat Valenciana for the financial support given to the Bionutest group. E. Miquel is the holder of a grant from the Ministerio de Ciencia y Tecnología, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosaura Farré.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miquel, E., Alegría, A., Barberá, R. et al. Speciation analysis of calcium, iron, and zinc in casein phosphopeptide fractions from toddler milk-based formula by anion exchange and reversed-phase high-performance liquid chromatography–mass spectrometry/flame atomic-absorption spectroscopy. Anal Bioanal Chem 381, 1082–1088 (2005). https://doi.org/10.1007/s00216-004-3002-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-004-3002-6

Keywords

Navigation