Skip to main content
Log in

From biomimetic apatites to biologically inspired composites

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Hydroxyapatite is an elective material for bone substitution. In this outline of our recent activity the crucial role of nanostructured ceramics in the design and preparation of ceramic scaffolds will be described, focussing on our more recent interest in biomimetic apatites, in particular apatites containing HPO 2−4 CO 2−3 and Mg2+ which are similar to the mineral component of bone. The paper describes such nanostructured products and, in particular, innovative synthetic techniques capable of yielding powders with higher reactivity and bioactivity. However, so far the characteristics of artificial bone tissues have been shown to be very different from those of natural bone, mainly because of the absence of the peculiar self-organizing interaction between apatites and the protein component. This causes modification of the structure of apatites and of the features of the overall composite forming human bone tissue. Therefore, attempts to mimic the features and structure of natural bone tissue, leading toward so-called bio-inspired materials, will be speculated upon. New techniques used to reproduce a composite in which a nanosize blade-like crystal of hydroxyapatite (HA) grows in contact with self-assembling fibres of natural polymer will be presented. In this specific case, the amazing ability of biological systems to store and process information at the molecular level, nucleating nanosize apatites (bio-inspired material), is exploited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lowestam HA, Weiner S (1989) On biomineralization. Oxford University Press, New York

    Google Scholar 

  2. Hanker JS, Giammara BL (1988) Science 242:885–889

    Google Scholar 

  3. Addadi L, Weiner S (1996) Proc Natl Acad Sci USA 82:4110–4114

    Google Scholar 

  4. Sato K, Kumagai Y, Tanaka J (2000) J Biomed Mater Res 50:16–20

    Article  Google Scholar 

  5. Silva CD, Pinheiro AG, Figueirò SD, Gòes JC, Sasaki JM, Miranda MAR, Sombra ASB (2002) J Mater Sci 37:2061–2070

    Article  Google Scholar 

  6. Boskey AL (1998) Calcif Tissue Int 63:179–182

    Article  Google Scholar 

  7. Chang MC, Ikoma T, Kikuchi M, Tanaka J (2001) J Mater Sci Lett 20:1199–1201

    Article  Google Scholar 

  8. Rhee SH, Do Lee J, Tanaka J (2000) J Am Ceram Soc 83:2890–2892

    Google Scholar 

  9. Bezzi G, Celotti G, Landi E, La Torretta TMG, Sopyan I, Tampieri A (2003) Mater Chem Phys 78:816–824

    Article  Google Scholar 

  10. Jillavenkatesa A, Condrate RA (1998) J Mater Sci 33:4111–4119

    Article  Google Scholar 

  11. Driessens FCM (1983) Bioceramics of calcium phosphates. CRC Press, Boca Raton, FL, pp 1–32

    Google Scholar 

  12. Rey C, Renugopalakrishnan V, Collins B, Glimcher M, (1991) Calcif Tissue Int 49:251–258

    CAS  PubMed  Google Scholar 

  13. Burnell JM, Teubner EJ, Miller AG (1980) Calcif Tissue Int 31:13–19

    Google Scholar 

  14. Rey C, Collins B, Goehl T, Dickson IR, Glimcher M (1989) Calcif Tissue Int 45:157–164

    Google Scholar 

  15. Tampieri A, Celotti G, Landi E, Sandri M (2004) Key Eng Mater 264–682:2051–2054

    Google Scholar 

  16. Nancollas GH (1982) In: Nancollas GH (ed) Biological mineralization and demineralization, Dahlem Konferenzen. Springer, Berlin, pp 79–99

    Google Scholar 

  17. Le Geros RZ, Le Geros JP (1984) In: Nriagu, JO, Moore PB (eds) Phosphate minerals. Springer, New York, pp 351–385

    Google Scholar 

  18. Le Geros RZ (1981) Prog Crystal Growth Charact 4:1

    Article  Google Scholar 

  19. Le Geros RZ, Taheri MM, Duirolgico GB, Le Geros JP (1980) Proceedings of the 2nd International Phosphorus, Boston, IMPHOS (Paris), pp 89–103

  20. Francis MD, Webb NC (1971) Calcif Tissue Int 6:335

    Google Scholar 

  21. Posner AS, Blumental NC, Betts F (1984) In: Nriagu JO, Moore PB (eds) Springer, New York, pp 330–350

  22. Bigi A, Marchetti F, Ripamonti A, Roveri N, Foresti E (1981) J Inorg Biochem 15:317

    Article  Google Scholar 

  23. Bigi A, Foresti E, Gregorini R, Ripamonti A, Roveri N, Shah JS (1992) Calcif Tissue Int 50:439

    Article  Google Scholar 

  24. Landi E, Tampieri A, Celotti G, Sprio S (2000) J Eur Ceram Soc 20:2377–2387

    Article  Google Scholar 

  25. Bigi A, Falini G, Foresti E, Gazzano M, Ripamonti A, Roveri N (1996) Acta Cryst B 52:87–93

    Article  Google Scholar 

  26. Bigi A, Falini G, Foresti E, Gazzano M, Ripamonti A, Roveri N (1993) J Inorg Biochem 49:69–78

    Article  Google Scholar 

  27. Celotti G, De Santis E, Lorini G, Tampieri A (2000) Italian Patent BO2000A000038

  28. Tampieri A, Celotti G, Sprio S, Delcogliano A, Franzese S (2001) Biomaterials 22:1365–1370

    Article  Google Scholar 

  29. Guicciardi S, Galassi C, Landi E, Tampieri A, Satou K, Pezzotti G (2001) J Mater Res 16:163–170

    Google Scholar 

  30. Dean-Mo Liu (1997) Ceram Int 23:135–139

    Article  Google Scholar 

  31. Ruiz-Hitzky E In Gomez-Romero P, Sanchez C (eds) Functional Hybrid Materials; Wiley-VCH Verlag, Weinheim (in press)

  32. Ruiz-Hitzky E (1988) Mol Cryst Liq Cryst Inc Nonlin Opt 161:433

    Google Scholar 

  33. Dietrich B, Viout P, Lehn JM (1993) Macrocyclic chemistry. Aspects of organic and inorganic supramolecular chemistry. VCH, Weinheim

    Google Scholar 

  34. Ruiz-Hitzky E (2003) Chem Record 3:88–100

    Article  Google Scholar 

  35. Tampieri A, Celotti G, Landi E, Sandri M, Roveri N, Falini G (2003) J Biomed Mater Res 67:618–256

    Article  Google Scholar 

  36. Tampieri A, Celotti G, Landi E, Roveri N (2004) European Patent 04001417.7

  37. Rendey SA, Razzouk S, Rey C, Bernache-Assollant D, Leroy G, Nardin M, Cournot G (1999) J Biomed Mater Res 45:140–147

    Article  Google Scholar 

  38. GuilleminG, Hunter SJ, Gay CV (1995) Cells Mater 5:157–65

    Google Scholar 

  39. Eiselt P, Yeh J, Latvala RK, Shea LD, Mooney DJ (2000) Biomaterials 21:1921–1927

    Article  Google Scholar 

  40. Amsden B, Turner N (1999) Biotechnol Bioeng 65:605–610

    Google Scholar 

  41. Khotimchenko YS, Kovalev VV, Savchenko OV, Ziganshina OA (2001) Mar Pharmacol 27:53–64

    Google Scholar 

  42. LeRoux MA, Guilak F, Setton LA (1999) J Biomed Mater Res 47:46–53

    Article  Google Scholar 

  43. Bouhadir KH, Lee KY, Alsberg E, Damm KL, Anderson KW, Mooney DJ (2001) Biotech Prog 17:945–950

    Article  Google Scholar 

  44. Paige KT, Cima LG, Yaremchuk MJ, Vacanti JP, Vacanti CA (1995) Plast Reconst Surg 96:1390–1398

    Google Scholar 

  45. Chang SCN, Rowley JA, Tobias G, Genes NG, Roy AK, Mooney DJ, Vacanti CA, Bonassar LJ (2001) J Biomed Mater Res 55:503–511

    Article  Google Scholar 

  46. De Chalain T, Phillips JH, Hinek A (1999) J Biomed Mater Res 44:280–288

    Article  Google Scholar 

  47. Landi E, Tampieri A, Celotti G, Vichi L, Sandri M (2004) Biomaterials 25:1763–1770

    Article  Google Scholar 

  48. Yang S, Leong KF, Du Z, Chua CK (2001) Tissue Eng 7:679–689

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Tampieri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tampieri, A., Celotti, G. & Landi, E. From biomimetic apatites to biologically inspired composites. Anal Bioanal Chem 381, 568–576 (2005). https://doi.org/10.1007/s00216-004-2943-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-004-2943-0

Keywords

Navigation