Skip to main content
Log in

Rapid determination of inorganic elements in airborne particulate matter by using acidified subcritical-water extraction and inductively-coupled plasma–optical-emission spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A rapid and simple method has been developed for determination of inorganic elements in airborne particulate matter (PM10) by using acidified subcritical water and ICP–OES. Elements such as Al, As, B, Ba, Cd, Cu, Fe, Mn, Pb, Se, and Zn were rapidly and efficiently extracted from PM10 samples with a solution of 0.1 mol L−1 HNO3 under subcritical conditions. The method requires approximately 5% of the amount of acid used in the standard microwave extraction procedure. The material selected for the subcritical extraction manifold was poly ether ether ketone (PEEK), to avoid sample contamination with elements present in previously reported stainless-steel manifolds. The extraction temperature, time of static and dynamic extraction, and flow rate of acidified water were studied keeping the pressure controlled at about 1,500 psig. The efficiency of extraction of most of the analytes increased with temperature, tending to quantitative extraction at temperatures near 150°C. After the extraction process the analytes were determined directly in the extract by ICP–OES. When the method was compared with the USEPA counterpart, the results indicate that under optimized conditions (static extraction time: 15 min, dynamic extraction time: 30 min, flow rate: 2 mL min−1) the analytes were extracted with recoveries between 73 and 158%. Alternatively, by using an extraction time of 15 min, the method could be used to screen for all the elements, with recoveries over 50%. The developed method was applied to the determination of inorganic elements in airborne particulate matter in the atmosphere of Santiago, Chile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Priego-López EP, Luque de Castro MD (2003) J Chromatogr A 1018:1–6

    Article  PubMed  Google Scholar 

  2. Luque-García JL, Luque de Castro MD (2003) J Chromatogr A 998:21–29

    Article  PubMed  Google Scholar 

  3. Kubátová A, Jansen B, Vaudoisot J, Hawthorne SB (2002) J Chromatogr A 975:175–188

    PubMed  Google Scholar 

  4. David MD, Campbell S, Li QX (2000) Anal Chem 72:3665–3670

    Article  CAS  PubMed  Google Scholar 

  5. Hageman KJ, Mazeas L, Grabanski CB, Miller DJ, Hawthorne SB (1996) Anal Chem 68:3892–3898

    Article  CAS  Google Scholar 

  6. Hawthorne SB, Trembley S, Moniot CL (2000) J Chromatogr A 886:237–244

    Article  CAS  PubMed  Google Scholar 

  7. Fernández-Pérez V, Jiménez-Carmona M, Luque de Castro MD (1999) J Anal At Spectrom 14:1761–1765

    Article  Google Scholar 

  8. Richter P, Sienra R, Romero R (2002) Atmos Environ 36:2375–2381

    Article  Google Scholar 

  9. Richter P, Sepúlveda B, Oliva R, Calderón K, Seguel R (2003) J Chromatogr A 994:169–177

    Article  CAS  PubMed  Google Scholar 

  10. Fernández-Pérez V, Jiménez-Carmona M, Cabanás-Espejo JM, Luque de Castro MD (1999) Anal Chim Acta 395:113–118

    Article  Google Scholar 

  11. US-EPA (1999) Compendium of methods for the determination of inorganic compounds in ambient air. Method IO-3.1. Selection, preparation and extraction of filter material. Center for Environmental Research Information. Office of Research and Development

  12. Dreetz CD, Lund W (1992) Anal Chim Acta 262:299–305

    Article  CAS  Google Scholar 

  13. Hlavay J, Polyak K, Molnar A, Meszaros E (1998) Analyst 123:859–863

    Article  CAS  Google Scholar 

  14. Hlavay J, Polyak K, Bodog I, Molnar A, Meszaros E (1996) Fresenius J Anal Chem 354:227–232

    CAS  Google Scholar 

  15. Lum KR, Betteridge JS, Macdonald RR (1982) Environ Technol Lett 3:57–62

    CAS  Google Scholar 

  16. Lum KR, Kokotich EA, Schroeder WH (1987) Sci Total Environ 63:161–173

    Article  CAS  Google Scholar 

  17. Šlejkovec Z, Salma I, van Elteren JT, Zemplén-Papp É (2000) Anal Bioanal Chem, 366:830–834

    Google Scholar 

  18. Huggins FE, Panjala D, Pattanaik S, Huffman GP (2002) Fuel Chemistry Division Preprints 47(2):681–682

    CAS  Google Scholar 

  19. SESMA (Servicio de Salud Metropolitano del Ambiente) (2002) Caracterización de elementos inorgánicos presentes en el aire de la Región Metropolitana 1997–2000. Ministerio de Salud, Laboratorio de Salud Ambiental, Santiago de Chile, p 42

  20. Artaxo P (1998) “Aerosol characterization study in Santiago-Chile wintertime 1998”. Report prepared for CONAMA RM, Santiago. http://www.conama.cl/rm/568/articles-2582_1998.pdf

  21. Ulriksen P, Cabello A (1997) “Concentraciones de arsénico en material particulado atmosférico en Chile”, Proyecto FONDEF 2–24

  22. Iniciativa de aire limpio en ciudades de América Latina. http://www.cleanairnet.org/lac/1471/article-40852.html

Download references

Acknowledgements

The authors thank FONDECYT for financial support (project No. 1030005). Thanks are also extended to CENMA and CEPEDEQ of the University of Chile for facilities given for carrying out the determinations by ICP–OES and ICP–MS, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Richter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morales-Riffo, J.J., Richter, P. Rapid determination of inorganic elements in airborne particulate matter by using acidified subcritical-water extraction and inductively-coupled plasma–optical-emission spectrometry. Anal Bioanal Chem 380, 129–134 (2004). https://doi.org/10.1007/s00216-004-2702-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-004-2702-2

Keywords

Navigation