Skip to main content
Log in

A Novel and Simple Method for Elements Determination in Aerobiological Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Analysis

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The identification of heavy metals in the atmosphere has increased a strong and growing interest. Thereby, monitoring of elements in aerobiological samples could be a powerful tool for detection of environmental pollution. In this work, a simple and fast method for the determination of trace metals bound to aeroparticles such as pollen was optimized. A single-step procedure for the dissolution of aerobiological samples in nitric acid and further determination by inductively coupled plasma mass spectrometry (ICP-MS) with a high-efficiency sample introduction system was developed. The procedure involved low dilution and low detection limits with adequate precision and its direct introduction into the ICP-MS system. The novel method proposed was successfully applied to determine five elements in concentrations from 0.04 mg g−1 (U) to 14.1 mg g−1 (Mn) in aerobiological samples. Through this procedure, the most significant correlations between pollen of Cupressaceae, Ulmus, and Moraceae with Mn, and pollen of Moraceae with Pb were found. This methodology could be a very useful tool to assess air pollution. We are not only proposing a new strategy to analyze air samples particles but also giving new information of the elemental composition carried by pollen.

Development of elements determination in aerobiological samples based on the nitric acid dissolution and its direct introduction into the ICP-MS system

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al-Khashman, O. A. (2004). Heavy metal distribution in dust, street dust and soils from the work place in Karak industrial estate, Jordan. Atmospheric Environment, 38, 6803–6812.

    Article  CAS  Google Scholar 

  • Belmonte, J., Perez, O. R., & Roure, J. M. (1986). Claves Para determinar los pólenes de las principales especies melíferas de la península Ibérica. Orsis, 2, 27–54.

    Google Scholar 

  • Belmonte, J., Canela, M., & Guardia, R. A. (2000). Comparison between categorical pollen data obtained by Hirst and Cour sampling methods. Aerobiología, 16, 177–185.

    Article  Google Scholar 

  • Bernasconi, E. S., De Vito, I. E., Martínez, L. D., & Raba, J. (2000). Liquen Usnea densirostra Como bioindicador de metales pesados. Determinación por ICP-AES acoplado con nebulizador ultrasónico. Ars Pharmaceutica, 41, 249–257.

    CAS  Google Scholar 

  • Bocio, A., Nadal, M., & Domingo, J. L. (2005). Human exposure to metals through the diet in Tarragona, Spain. Biological Trace Element Research, 104, 193–201.

    Article  CAS  Google Scholar 

  • Boffetta, P., & Nyberg, F. (2003). Contribution of environmental factors to cancer risk. British Medical Bulletin, 68, 71–94.

    Article  CAS  Google Scholar 

  • Bukowiecki, N., Gehrig, R., Hill, M., Lienemann, P., Zwicky, C. N., Buchmann, B., Weingartner, E., & Baltensperger, U. (2007). Iron, manganese and copper emitted by cargo and passenger trains in Zürich (Switzerland): Size-segregated mass concentrations in ambient air. Atmospheric Environment, 41, 878–889.

    Article  CAS  Google Scholar 

  • Cariñanos, P., & Casares-Porcel, M. (2011). Urban green zones and related pollen allergy: A review. Some guidelines for designing spaces with low allergy impact. Landscape and Urban Planning, 101, 205–214.

    Article  Google Scholar 

  • Chandra Sekhar, K., Chary, N. S., Kamala, C. T., & Shanker, F. H. (2005). Environmental pathway and risk assessment studies of the Musi River’s heavy metal contamination—A case study. Human and Ecological Risk Assessment, 11, 1217–1235.

    Article  Google Scholar 

  • Chapman, P. M., Wang, F., Janssen, C. R., Goulet, R., & Kamunde, C. (2003). Conducting ecological risk assessment of inorganic metals and metalloids: Currents status. Human and Ecological Risk Assessment, 9, 641–697.

    Article  CAS  Google Scholar 

  • Chen, W., Li, L., Chang, A. C., Wu, L., Chaney, R. L., Smith, R., & Ajwa, H. (2009). Characterizing the solid–solution partitioning coefficient and plant uptake factor of as, cd, and Pb in California croplands. Agriculture, Ecosystems and Environment, 129, 212–220.

    Article  CAS  Google Scholar 

  • Farkhondeh, R. (2009). Air pollution effects on pollen of Thuja orientalis L. (Cupressaceae). Grana, 48, 205–212.

    Article  Google Scholar 

  • Galán, C., Cariñanos González, P., Alcázar Teno, P. & Dominguez Vilches E. (2007). Manual de calidad y gestión de la Red Española de Aerobiología. Ed. Argos impresores S. L. (pp 39). Universidad de Córdoba. España.

  • Gomes, C., Ribeiro, H., & Abreu, I. (2019). Aerobiology of Cupressaceae in Porto city, Portugal. Aerobiologia, 35, 97–103.

    Article  Google Scholar 

  • Gonca Çakmaka, G., Ertürk Arı, P., Emercea, E., Arı, A., Odabaşıc, M., Schinsd, R., Burgaza, S., & Gagab, E. O. (2019). Investigation of spatial and temporal variation of particulate matter in vitro genotoxicity and cytotoxicity in relation to the elemental composition. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. https://doi.org/10.1016/j.mrgentox.2019.01.009.

  • Grewling, Ł., Bogawski, P., & Smith, M. (2016). Pollen nightmare: Elevated airborne pollen levels at night. Aerobiologia, 32, 725–728.

    Article  CAS  Google Scholar 

  • Gumowski, P. I., Clot, B., Davet, A., Saad, S., Hassler, H., & Dunoyer-Geindre, S. (2000). The importance of hornbeam (Carpinus sp.) pollen hypersensitivity in spring allergies. Aerobiologia, 16, 83–86.

    Article  Google Scholar 

  • Han, F. X., Banin, A., Su, Y., Monts, D. L., Plodinec, M. J., Kingery, W. L., & Triplett, G. E. (2002). Industrial age anthropogenic inputs of heavy metals into the pedosphere. Naturwissenschaften, 89, 497–504.

    Article  CAS  Google Scholar 

  • Hladun, K. R., Parker, D. R., & Trumble, J. T. (2015). Cadmium, copper, and lead accumulation and bioconcentration in the vegetative and reproductive organs of Raphanus sativus: Implications for plant performance and pollination. Journal of Chemical Ecology, 41, 386–395.

    Article  CAS  Google Scholar 

  • Hladun, K. R., Di, N., Liu, T., & Trumbley, J. T. (2016). Metal contaminant accumulation in the hive: Consequences for whole-colony health and brood production in the honey bee (Apis Mellifera L.). Environmental Toxicology and Chemistry, 35, 322–329.

    Article  CAS  Google Scholar 

  • Kalbande, D. M., Sharda, N. D., Chaudhari, P. R., & Wate, S. R. (2008). Biomonitoring of heavy metals by pollen in urban environment. Environmental Monitoring and Assessment, 138, 233–238.

    Article  CAS  Google Scholar 

  • Kovats, S., Depledge, M., Haines, A., Fleming, L. E., Wilkinson, P., Shonkoff, S. B., & Scovronick, N. (2014). The health implications of fracking. Lancet, 383, 757–758.

    Article  Google Scholar 

  • Meindl, G. A., Bain, D. J., & Ashman, T. (2014). Variation in nickel accumulation in leaves reproductive organs and floral rewards in two hyperaccumulating Brassicaceae species. Plant and Soil, 383, 349–356.

    Article  CAS  Google Scholar 

  • Micheletti, M. I., Piacentini, R. D., Crinó, E., Moglia, M. M., Vázquez, M. L., G. M., & Ipiña, A. (2012). Análisis de aerosoles atmosféricos en distintos sitios de Argentina, dentro y fuera de períodos de eventos de Alta contaminación. Actas del Segundo Taller Argentino de Ciencias Ambientales, 231–262.

  • Miller, J. R., Hudson-Edwards, K. A., Lechler, P. J., Preston, D., & Macklin, M. G. (2004). Heavy metal contamination of water, soil and produce within riverine communities of the Rı́o Pilcomayo basin, Bolivia. Science of the Total Environment, 320, 189–209.

    Article  CAS  Google Scholar 

  • Moglia, M. M., Vazquez, M. L., Crinó, E., Baluszka, I., Fonseca, A. M., & G.M. (2011). Airborne fungal spores and pollen content in the atmosphere of the city of San Luis, Argentina. Biocell, 35(A), 252–189.

    Google Scholar 

  • Morón, D., Grzés, I. M., Skórka, P., Szentgyorgyi, H., Laskowski, R., Potts, S. G., & Woyciechowski, M. (2012). Abundance and diversity of wild bees along gradients of heavy metal pollution. Journal of Applied Ecology, 49, 118–125.

    Article  Google Scholar 

  • Muradoglu, F., Beyhan, O., & Sonmez, F. (2017). Response to heavy metals on pollen viability, germination and tube growth of some apple cultivars. Fresenius Environmental Bulletin, 26, 4456–4461.

    CAS  Google Scholar 

  • Ouyang, T. P., Zhu, Z. Y., Kuang, Y. Q., Huang, N. S., Tan, J. J., Guo, G. Z., Gu, L. S., & Sun, B. (2006). Dissolved trace elements in river water: Spatial distribution and the influencing factor, a study for the Pearl River Delta economic zone, China. Environmental Geology, 49, 733–742.

    Article  CAS  Google Scholar 

  • Prieto Méndez, J., González Ramírez, C. A., Román Gutiérrez, A. D., & Prieto García, F. (2009). Plant contamination and phytotoxicity due to heavy metals from soil and water. Tropical and Subtropical Agroecosystems, 10, 29–44.

    Google Scholar 

  • Sedghy, F., Varasteh, A., Sankian, M., & Moghadam, M. (2018). Interaction between air pollutants and pollen grains: The role on the rising trend in allergy. Report of Biochemistry and Molecular Biology, 6, 219–224.

    CAS  Google Scholar 

  • Tahri, M., Benyaïch, F., Bounakhla, M., Bilal, E., Gruffat, J. J., Moutte, J., & García, D. (2005). Multivariate analysis of heavy metal contents in soils, sediments and water in the region of Meknes (Central Morocco). Environmental Monitoring and Assessment, 102, 405–417.

    Article  CAS  Google Scholar 

  • Thibaudon, M., Galán, C., Lanzoni, C., & Monnier, S. (2015). Validation of a new adhesive coating solution: Comparative study of carbon tetrachloride and diethyl ether. Aerobiologia, 31, 57–62.

    Article  Google Scholar 

  • Van der Steen, J. J. M., Kraker, J., & Grotenhuis, T. (2015). Assessment of the potential of honeybees (Apis mellifera L.) in biomonitoring of air pollution by cadmium, lead and vanadium. Journal of Environmental Protection, 6, 96–102.

    Article  Google Scholar 

Download references

Funding

This work received financial support from project PROICO 030716 (National University of San Luis, FCFMyN) and the Institute of Chemistry of San Luis (INQUISAL, UNSL-CONICET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta M. Moglia.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• A novel and simple method for elements determination in aerobiological samples has been developed.

• We used ICP-MS to analyze aerobiological samples after acid dissolution.

• The procedure gives a fast, precise, accurate, and less expensive sample preparation in complex matrices.

• The method showed a positive association between the pollen contents and heavy metal concentration.

• The determination of heavy metals in aerobic particles is a powerful tool for detection of environmental pollution.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isaguirre, A.C., Moyano, M.F., Gil, R.A. et al. A Novel and Simple Method for Elements Determination in Aerobiological Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Analysis. Water Air Soil Pollut 231, 70 (2020). https://doi.org/10.1007/s11270-020-4416-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-4416-2

Keywords

Navigation