Skip to main content
Log in

Multiresidue method using SPME for the determination of various pesticides with different volatility in confined atmospheres

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An analytical method is described for assessing the vapour concentration of 11 pesticides (bioallethrin, chlorpyriphos methyl, folpet, malathion, procymidone, quintozene, chlorothalonil, fonofos, penconazole and trimethacarb) in confined atmospheres (e.g. a greenhouse after pesticide application). This study is a successful extension of a method previously developed by the authors for dichlorvos to much less volatile pesticides. Sampling was performed by using polydimethylsiloxane–solid phase micro-extraction (PDMS–SPME) fibres immersed in a 250-mL sampling flask through which air samples were dynamically pumped from the analysed atmosphere. After a 40-min sampling duration, samples were analysed by GC/MS.

Calibration was performed from a vapour-saturated air sample. The linearity of the observed signal versus pesticide concentration in the vapour phase was proved from spiked liquid samples whose headspace concentrations were measured by using the proposed method. This procedure gave calibration curves with regression coefficients (R 2) greater than 0.98, and the repeatability of these measurements was found with RSDs of 1.9–7.6%. As a field application test, this analysis procedure was used for the determination of gaseous procymidone concentrations as a function of time in the atmosphere of an experimental 8-m2 and 20-m3 greenhouse. The pesticide was sprayed according to real cultivation conditions, and measurements were made for 80 h after application (8 measurements). The observed concentrations found ranged from 200 to 500 µg m−3, thus indicating the level of contamination of the air breathed by people in such working conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4a–e
Fig. 5
Fig. 6
Fig. 7a–d
Fig. 8

Similar content being viewed by others

Abbreviations

GC/MS:

gas chromatography/mass spectrometry

SIM:

selective ion monitoring

FC43:

perfluorotributylamine

RSD:

relative standard deviation

LOD:

limit of detection

LOQ:

limit of quantification

References

  1. Oehme M, Haugen JE, Schlabach M (1996) Environ Sci Technol 30:2294–2304

    Article  CAS  Google Scholar 

  2. Eisenrich SJ, Looney BB, Thorston JD (1981) Environ Sci Technol 15:30–38

    Google Scholar 

  3. Bidleman TF, Leonard R (1982) Atmos Environ 16:1099–1107

    CAS  Google Scholar 

  4. Sanusi A, Millet M, Mirabel Ph, Wortham H (2000) Sci Total Environ 263:263–277

    Article  CAS  PubMed  Google Scholar 

  5. Carrera G, Fernandez P, Gimault JO, Ventura M, Camarero L, Catalan J, Nickus U, Thies H, Psenner R (2002) Environ Sci Technol 36:2581–2588

    Article  CAS  PubMed  Google Scholar 

  6. Alegria HA, Bidleman TF, Shaw TJ (2000) Environ Sci Technol 34:1953–1958

    Article  CAS  Google Scholar 

  7. Clément M, Arzel S, Le Bot B, Seux R, Millet M (2000) Chemosphere 40:49–56

    PubMed  Google Scholar 

  8. Briand O, Millet M, Bertrand F, Clément M, Seux R (2002) Anal Bioanal Chem 374:848–857

    Article  CAS  PubMed  Google Scholar 

  9. Sanusi A, Millet M, Wortham H, Mirabel Ph (1997) Analusis 25:302–308

    CAS  Google Scholar 

  10. Lambropoulou DA, Albanis TA (2001) J Chromatogr A 922:243–255

    CAS  PubMed  Google Scholar 

  11. Murayama H, Mukai H, Mitobe H, Moriyama N (2000) Anal Sci 16:257–263

    CAS  Google Scholar 

  12. Garcia-Alonzo S, Perez-Pastor RM, Quejido-Cabezas AJ (2002) Talanta 57:773–783

    Article  Google Scholar 

  13. Martos PA, Pawliszyn J (1999) Anal Chem 71:1513–1520

    CAS  PubMed  Google Scholar 

  14. Khaled A, Pawliszyn J (2000) J Chromatogr A 892:455–457

    CAS  PubMed  Google Scholar 

  15. Capri E, Alberici R, Glass CR, Minuto G, Trevisan M (1999) J Agric Food Chem 47:4443–4449

    Article  CAS  PubMed  Google Scholar 

  16. Cruz Marquez M, Arrebola FJ, Egea Gonzalez FG, Castro Cano ML, Martinez Vidal JL (2001) J Chromatogr A 939:79–89

    Article  PubMed  Google Scholar 

  17. Elflein L, Berger Preiss E, Levsen K, Wünsch G (2003) J Chromatogr A 985:147–157

    Article  CAS  PubMed  Google Scholar 

  18. Yoshida T, Matsunaga I, Oda H (2004) J Chromatogr A 1023:255–269

    Article  CAS  PubMed  Google Scholar 

  19. Koziel JA, Martos PA, Pawliszyn J (2004) J Chromatogr A 1025:3–9

    Article  CAS  PubMed  Google Scholar 

  20. Pawliszyn J (1997) Solid phase micro-extraction: theory and practice. Wiley-VCH, New York

  21. Ai J (1997) Anal Chem 69:1230–1236

    CAS  Google Scholar 

  22. Yi H, Yan W, Kee LH (2000) J Chromatogr A 874:149–154

    Article  PubMed  Google Scholar 

  23. Doong RA, Chang SM, Sun YC (2000) J Chromatogr A 879:177–188

    Article  CAS  PubMed  Google Scholar 

  24. Eisert R, Levsen KJ (1995) Fresenius J Anal Chem 351:555–562

    CAS  Google Scholar 

  25. Correia M, Matos CD, Alves A (2000) J Chromatogr A 889:59–67

    PubMed  Google Scholar 

  26. Urruty L, Montury M (1996) J Agric Food Chem 44:3871–3877

    Article  CAS  Google Scholar 

  27. Hernandez F, Beltran J, Lopez FJ, Gaspar JV (2000) Anal Chem 72:2313–2322

    CAS  PubMed  Google Scholar 

  28. Falqui-Cao C, Wang Z, Urruty L, Pommier JJ, Montury M (2001) J Agric Food Chem 49:5092–5097

    Article  CAS  PubMed  Google Scholar 

  29. Kataoka H, Lord HL, Pawliszyn J (2000) J Chromatogr A 880:35–62

    CAS  PubMed  Google Scholar 

  30. Sanusi A, Ferrari F, Millet M, Montury M (2003) J Environ Monit 5:574–577

    Article  CAS  PubMed  Google Scholar 

  31. Zhang ZY, Pawliszyn J (1995) Anal Chem 67:34–43

    CAS  Google Scholar 

  32. Siebers J, Mattusch P (1996) Chemosphere 33:1597–1607

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Conseil Général de la Dordogne, the Centre National de la Recherche Scientifique and the European Community Marie Curie Training Site Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Montury.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrari, F., Sanusi, A., Millet, M. et al. Multiresidue method using SPME for the determination of various pesticides with different volatility in confined atmospheres. Anal Bioanal Chem 379, 476–483 (2004). https://doi.org/10.1007/s00216-004-2587-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-004-2587-0

Keywords

Navigation