Skip to main content
Log in

Optimization of Headspace Solid-Phase Microextraction and Static Headspace Sampling of Low-Boiling Volatiles Emitted from Wild Rocket (Diplotaxis tenuifolia L.)

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

Emission of low-boiling volatile organic compounds (VOCs) is one of the first signs of a cascade of degradation processes taking place in leafy green vegetables after harvest. VOCs from fresh produce can be difficult to measure due to their high volatility, low stability, and variable concentrations. VOCs emitted from packaged wild rocket were selected for optimization of two sampling techniques: solid-phase microextraction (SPME) and static headspace (SHS) sampling. The selected compounds were acetaldehyde, dimethyl sulfide, nitromethane, 3-methylfuran, ethyl acetate, dimethyl disulfide, and hexanal. These compounds having different chemical structures, molecular weights, and boiling points were representative for the VOC profile of packaged wild rocket. The carboxen/polydimethylsiloxane (CAR/PDMS) fiber showed the highest extraction efficiency. For SHS analysis, injection of 750 μL of gas sample at 10 μL s−1 injection speed and 1:1 split ratio was optimal. High losses of dimethyl sulfide, dimethyl disulfide, and nitromethane (21–62 %) were observed during 20 h postsampling storage of the CAR/PDMS fiber prior to desorption. SHS sampling of VOCs and storage of vials for 2.75 h prior to GC-MS analysis also led to losses of volatiles. For analysis of VOCs naturally emitted from packaged wild rocket, the SPME and SHS sampling methods were complementary as they covered a broad concentration range from the lower parts per trillion (SPME) to the higher parts per million (SHS) ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ai J (1997) Solid phase microextraction for quantitative analysis in nonequilibrium situations. Anal Chem 69(6):1230–1236. doi:10.1021/ac9609541

    Article  CAS  Google Scholar 

  • Ai J (1998) Solid-phase microextraction in headspace analysis. Dynamics in non-steady-state mass transfer. Anal Chem 70(22):4822–4826. doi:10.1021/ac980642t

    Article  CAS  Google Scholar 

  • Amaro AL, Fundo JF, Oliveira A, Beaulieu JC, Fernández-Trujillo JP, Almeida DPF (2013) 1-Methylcyclopropene effects on temporal changes of aroma volatiles and phytochemicals of fresh-cut cantaloupe. J Sci Food Agric 93(4):828–837. doi:10.1002/jsfa.5804

    Article  CAS  Google Scholar 

  • Araújo HC, Lacerda MEG, Lopes D, Bizzo HR, Kaplan MAC (2007) Studies on the aroma of maté (Ilex paraguariensis St. Hil.) using headspace solid-phase microextraction. Phytochem Anal 18(6):469–474. doi:10.1002/pca.1002

    Article  Google Scholar 

  • Arisseto A, Vicente E, Furlani R, Pereira A, Figueiredo Toledo M (2013) Development of a headspace-solid phase microextraction-gas chromatography/mass spectrometry (HS-SPME-GC/MS) method for the determination of benzene in soft drinks. Food Anal Methods 6(5):1379–1387. doi:10.1007/s12161-012-9554-8

    Article  Google Scholar 

  • Blažević I, Mastelić J (2009) Glucosinolate degradation products and other bound and free volatiles in the leaves and roots of radish (Raphanus sativus L.). Food Chem 113(1):96–102. doi:10.1016/j.foodchem.2008.07.029

    Article  Google Scholar 

  • Borges RM, Ranganathan Y, Krishnan A, Ghara M, Pramanik G (2011) When should fig fruit produce volatiles? Pattern in a ripening process. Acta Oecol 37(6):611–618. doi:10.1016/j.actao.2011.06.003

    Article  Google Scholar 

  • Börjesson T, Stöllman U, Schnürer J (1992) Volatile metabolites produced by six fungal species compared with other indicators of fungal growth on cereal grains. Appl Environ Microbiol 58(8):2599–2605

    Google Scholar 

  • Caleb OJ, Opara UL, Mahajan PV, Manley M, Mokwena L, Tredoux AGJ (2013) Effect of modified atmosphere packaging and storage temperature on volatile composition and postharvest life of minimally-processed pomegranate arils (cvs. ‘Acco’ and ‘Herskawitz’). Postharvest Biol Technol 79:54–61. doi:10.1016/j.postharvbio.2013.01.006

    Article  CAS  Google Scholar 

  • R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Di Pentima JH, Rios JJ, Clemente A, Olias JM (1995) Biogenesis of off-odor in broccoli storage under low-oxygen atmosphere. J Agric Food Chem 43(5):1310–1313. doi:10.1021/jf00053a035

    Article  Google Scholar 

  • Dong J-Z, DeBusk S (2010) GC–MS analysis of hydrogen sulfide, carbonyl sulfide, methanethiol, carbon disulfide, methyl thiocyanate and methyl disulfide in mainstream vapor phase cigarette smoke. Chromatographia 71(3–4):259–265. doi:10.1365/s10337-009-1434-z

    Article  CAS  Google Scholar 

  • Fall R, Karl T, Hansel A, Jordan A, Lindinger W (1999) Volatile organic compounds emitted after leaf wounding: on-line analysis by proton-transfer-reaction mass spectrometry. J Geophys Res Atmos 104(D13):15963–15974. doi:10.1029/1999jd900144

    Article  CAS  Google Scholar 

  • Garcia-Esteban M, Ansorena D, Astiasaran I, Ruiz J (2004) Study of the effect of different fiber coatings and extraction conditions on dry cured ham volatile compounds extracted by solid-phase microextraction (SPME). Talanta 64(2):458–466. doi:10.1016/j.talanta.2004.03.007

    Article  CAS  Google Scholar 

  • Haberhauer-Troyer C, Rosenberg E, Grasserbauer M (1999) Evaluation of solid-phase microextraction for sampling of volatile organic sulfur compounds in air for subsequent gas chromatographic analysis with atomic emission detection. J Chromatogr A 848(1–2):305–315. doi:10.1016/s0021-9673(99)00459-8

    Article  CAS  Google Scholar 

  • Hansen M, Buttery RG, Stern DJ, Cantwell MI, Ling LC (1992) Broccoli storage under low-oxygen atmosphere: identification of higher boiling volatiles. J Agric Food Chem 40(5):850–852. doi:10.1021/jf00017a029

    Article  CAS  Google Scholar 

  • Hatanaka A (1993) The biogeneration of green odor by green leaves. Phytochemistry 34(5):1201–1218. doi:10.1016/0031-9422(91)80003-J

    Article  CAS  Google Scholar 

  • Jabalpurwala F, Gurbuz O, Rouseff R (2010) Analysis of grapefruit sulphur volatiles using SPME and pulsed flame photometric detection. Food Chem 120(1):296–303. doi:10.1016/j.foodchem.2009.09.079

    Article  CAS  Google Scholar 

  • Jia C, Batterman S, Chernyak S (2006) Development and comparison of methods using MS scan and selective ion monitoring modes for a wide range of airborne VOCs. J Environ Monit 8(10):1029–1042. doi:10.1039/b607042f

    Article  CAS  Google Scholar 

  • Jirovetz L, Smith D, Buchbauer G (2002) Aroma compound analysis of Eruca sativa (Brassicaceae) SPME headspace leaf amples Using GC, GC−MS, and Olfactometry. J Agric Food Chem 50(16):4643–4646. doi:10.1021/jf020129n

    Article  CAS  Google Scholar 

  • Kabir E, Kim K-H (2012) Use of solid phase microextraction (SPME) in the analysis of the reduced sulfur compounds (RSC) and its experimental limitations. Microchem J 103:42–48. doi:10.1016/j.microc.2012.01.005

    Article  CAS  Google Scholar 

  • Khan MAH, Whelan ME, Rhew RC (2012) Analysis of low concentration reduced sulfur compounds (RSCs) in air: storage issues and measurement by gas chromatography with sulfur chemiluminescence detection. Talanta 88:581–586. doi:10.1016/j.talanta.2011.11.038

    Article  CAS  Google Scholar 

  • Kimmerer TW, Kozlowski TT (1982) Ethylene, ethane, acetaldehyde, and ethanol production by plants under stress. Plant Physiol 69(4):840–847

    Article  CAS  Google Scholar 

  • Koukounaras A, Siomos AS, Sfakiotakis E (2007) Postharvest CO2 and ethylene production and quality of rocket (Eruca sativa Mill.) leaves as affected by leaf age and storage temperature. Postharvest Biol Technol 46(2):167–173. doi:10.1016/j.postharvbio.2007.04.007

    Article  CAS  Google Scholar 

  • Laothawornkitkul J, Jansen RMC, Smid HM, Bouwmeester HJ, Muller J, van Bruggen AHC (2010) Volatile organic compounds as a diagnostic marker of late blight infected potato plants: a pilot study. Crop Prot 29(8):872–878. doi:10.1016/j.cropro.2010.03.003

    Article  CAS  Google Scholar 

  • Larroque V, Desauziers V, Mocho P (2006) Study of preservation of polydimethylsiloxane/Carboxen solid-phase microextraction fibres before and after sampling of volatile organic compounds in indoor air. J Chromatogr A 1124(1–2):106–111. doi:10.1016/j.chroma.2006.05.043

    Article  CAS  Google Scholar 

  • Lestremau F, Desauziers V, Roux J-C, Fanlo J-L (2003) Development of a quantification method for the analysis of malodorous sulphur compounds in gaseous industrial effluents by solid-phase microextraction and gas chromatography–pulsed flame photometric detection. J Chromatogr A 999(1–2):71–80. doi:10.1016/S0021-9673(03)00328-5

    Article  CAS  Google Scholar 

  • Lestremau F, Andersson FAT, Desauziers V (2004) Investigation of artefact formation during analysis of volatile sulphur compounds using solid phase microextraction (SPME). Chromatographia 59(9–10):607–613. doi:10.1365/s10337-004-0261-5

    CAS  Google Scholar 

  • Løkke MM, Seefeldt HF, Edelenbos M (2012) Freshness and sensory quality of packaged wild rocket. Postharvest Biol Technol 73:99–106. doi:10.1016/j.postharvbio.2012.06.004

    Article  Google Scholar 

  • Mangani G, Berloni A, Capaccioni B, Tassi F, Maione M (2004) Gas chromatographic–mass spectrometric analysis of hydrocarbons and other neutral organic compounds in volcanic gases using SPME for sample preparation. Chromatographia 59(3–4):213–217. doi:10.1365/s10337-003-0131-6

    CAS  Google Scholar 

  • Mattheis JP, Buchanan DA, Fellman JK (1991) Change in apple fruit volatiles after storage in atmospheres inducing anaerobic metabolism. J Agric Food Chem 39(9):1602–1605. doi:10.1021/jf00009a012

    Article  CAS  Google Scholar 

  • Mochalski P, Wzorek B, Śliwka I, Amann A (2009) Improved pre-concentration and detection methods for volatile sulphur breath constituents. J Chromatogr B 877(20–21):1856–1866. doi:10.1016/j.jchromb.2009.05.010

    Article  CAS  Google Scholar 

  • Nielsen AT, Jonsson S (2002a) Quantification of volatile sulfur compounds in complex gaseous matrices by solid-phase microextraction. J Chromatogr A 963(1–2):57–64. doi:10.1016/s0021-9673(02)00556-3

    Article  CAS  Google Scholar 

  • Nielsen AT, Jonsson S (2002b) Trace determination of volatile sulfur compounds by solid-phase microextraction and GC-MS. Analyst 127(8):1045–1049. doi:10.1039/b202985e

    Article  CAS  Google Scholar 

  • Nielsen T, Bergström B, Borch E (2008) The origin of off-odours in packaged rucola (Eruca sativa). Food Chem 110(1):96–105. doi:10.1016/j.foodchem.2008.01.063

    Article  CAS  Google Scholar 

  • Obando-Ulloa JM, Nicolai B, Lammertyn J, Bueso MC, Monforte AJ, Fernández-Trujillo JP (2009) Aroma volatiles associated with the senescence of climacteric or non-climacteric melon fruit. Postharvest Biol Technol 52(2):146–155. doi:10.1016/j.postharvbio.2008.11.007

    Article  CAS  Google Scholar 

  • Oliveira AP, Silva LR, Andrade PB, Valentão P, Silva BM, Pereira JA, Guedes de Pinho P (2010) Determination of low molecular weight volatiles in Ficus carica using HS-SPME and GC/FID. Food Chem 121(4):1289–1295. doi:10.1016/j.foodchem.2010.01.054

    Article  CAS  Google Scholar 

  • Pawliszyn J (2000) Theory of solid-phase microextraction. J Chromatogr Sci 38(7):270–278. doi:10.1093/chromsci/38.7.270

    Article  CAS  Google Scholar 

  • Pawliszyn J, Pawliszyn B, Pawliszyn M (1997) Solid phase microextraction (SPME). Chem Educ 2(4):1–7. doi:10.1007/s00897970137a

    Article  Google Scholar 

  • Pelayo C, Ebeler SE, Kader AA (2003) Postharvest life and flavor quality of three strawberry cultivars kept at 5°C in air or air+20 kPa CO2. Postharvest Biol Technol 27(2):171–183. doi:10.1016/s0925-5214(02)00059-5

    Article  Google Scholar 

  • Perkins ML, D'Arcy BR, Lisle AT, Deeth HC (2005) Solid phase microextraction of stale flavour volatiles from the headspace of UHT milk. J Sci Food Agric 85(14):2421–2428. doi:10.1002/jsfa.2243

    Article  CAS  Google Scholar 

  • Ras MR, Marcé RM, Borrull F (2008) Solid-phase microextraction—gas chromatography to determine volatile organic sulfur compounds in the air at sewage treatment plants. Talanta 77(2):774–778. doi:10.1016/j.talanta.2008.07.027

    Article  CAS  Google Scholar 

  • Rosillo L, Salinas MR, Garijo J, Alonso GL (1999) Study of volatiles in grapes by dynamic headspace analysis–application to the differentiation of some Vitis vinifera varieties. J Chromatogr A 847(1–2):155–159. doi:10.1016/S0021-9673(99)00036-9

    Article  CAS  Google Scholar 

  • Sulyok M, Haberhauer-Troyer C, Rosenberg E, Grasserbauer M (2001) Investigation of the storage stability of selected volatile sulfur compounds in different sampling containers. J Chromatogr A 917(1–2):367–374. doi:10.1016/S0021-9673(01)00654-9

    Article  CAS  Google Scholar 

  • Tuduri L, Desauziers V, Fanlo JL (2001) Potential of solid-phase microextraction fibers for the analysis of volatile organic compounds in air. J Chromatogr Sci 39(12):521–529. doi:10.1093/chromsci/39.12.521

    Article  CAS  Google Scholar 

  • Vandendriessche T, Keulemans J, Geeraerd A, Nicolai BM, Hertog ML (2012a) Evaluation of fast volatile analysis for detection of Botrytis cinerea infections in strawberry. Food Microbiol 32(2):406–414. doi:10.1016/j.fm.2012.08.002

    Article  CAS  Google Scholar 

  • Vandendriessche T, Nicolai BM, Hertog MLATM (2012b) Optimization of HS SPME fast GC-MS for high-throughput analysis of strawberry aroma. Food Anal Methods 6(2):512–520. doi:10.1007/s12161-012-9471-x

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank The Danish Agency for Science, Technology, and Innovation (project number 08-034100) and Food Future Innovation (project entitled “Monitoring freshness of packaged fresh fruit and vegetables by profiling volatile organic compounds (VOCs)”) for financial support. Yding Grønt A/S is acknowledged for their contribution of wild rocket for experiments.

Conflict of interest

Alexandru Luca declares that he has no conflict of interest. Vibe Bach declares that she has no conflict of interest. Merete Edelenbos declares that she has no conflict of interest. This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merete Edelenbos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luca, A., Bach, V. & Edelenbos, M. Optimization of Headspace Solid-Phase Microextraction and Static Headspace Sampling of Low-Boiling Volatiles Emitted from Wild Rocket (Diplotaxis tenuifolia L.). Food Anal. Methods 8, 1185–1196 (2015). https://doi.org/10.1007/s12161-014-9993-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-014-9993-5

Keywords

Navigation