Skip to main content
Log in

Kinetic method for acetylsalicylic acid determination based on its inhibitory effect upon the catalytic decomposition of H2O2

  • Short Communication
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The catalytic reaction of catalase was investigated, by means of a Clark oxygen sensor, in the presence of various concentrations of acetylsalicylic acid. Michaelis-Menten kinetic parameters were determined from Lineweaver-Burk plots, obtained in the absence and in the presence of the inhibitor. The inhibition pattern, suggested by the Lineweave-Burk plots, corresponds to a fully mixed inhibition mechanism. A kinetic method, based on the indicator reaction: \({\text{H}}_{{\text{2}}} {\text{O}}_{{\text{2}}} \xrightarrow{{{\text{catalase, acetylsalicylic acid}}}}{\text{H}}_{{\text{2}}} {\text{O}} + 0.5{\text{O}}_{{\text{2}}} \), was developed for the quantitative determination of acetylsalicylic acid. Calibration graphs of the reciprocal value of first-order rate constant versus acetylsalicylic concentration covered the concentration range (2.99–19.98)×10−4 mol/L, while the detection limit was 4.12×10−4 mol/L acetylsalicylic acid with a standard deviation of 2.1×10−5 mol/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1

Similar content being viewed by others

References

  1. Nicholls P, Schonbaum GR (1963) Catalases. In: Boyer PD, Lardy H, Myrback K (eds) The enzymes. Academic Press, Orlando, 8:147–225

  2. Chance B, Sies H, Boveris A (1979) Physiol Rev 59:527–605

    CAS  PubMed  Google Scholar 

  3. Chance B (1947) Acta Chem Scand 1:236–267

    CAS  Google Scholar 

  4. Jones P, Suggett A (1968) Biochem J 110:617–620

    CAS  PubMed  Google Scholar 

  5. George P (1949) Biochem J 44:197–205

    CAS  Google Scholar 

  6. Chance B, Herbert D (1950) Biochem J 46:402–414

    CAS  Google Scholar 

  7. Lardinois OM, Mestdagh MM, Rouxhet PG (1996) Biochim Biophys Acta 1295:222–238

    CAS  PubMed  Google Scholar 

  8. Kremer ML (1981) J Phys Chem 85:835–839

    CAS  Google Scholar 

  9. Chance B (1949) J Biol Chem 179:1299–1309

    CAS  Google Scholar 

  10. Ogura Y, Tonomura Y, Hino S, Tamiya H (1950) J Biochem–Tokyo 37:153–177

    Google Scholar 

  11. Margoliash E, Novogrodsky A (1958) Biochem J 68:468–475

    CAS  PubMed  Google Scholar 

  12. Sultan SM (1987) Analyst 112:1331–1333

    CAS  PubMed  Google Scholar 

  13. Geeta N, Baggi TR (1988) Microchem J 38:232–235

    CAS  Google Scholar 

  14. Glombitza BW, Schmidt PC (1994) J Pharm Sci 83:751–757

    CAS  PubMed  Google Scholar 

  15. Ruiz Medina A, Fernandez de Cordova ML, Ortega-Barrales P, Molina-Diaz A (2001) Int J Pharm 216:95–104

    Article  PubMed  Google Scholar 

  16. Sena MM, Fernandes JCB; Rover L, Poppi RJ, Kubota LT (2000) Anal Chim Acta 409:159–170

    Article  CAS  Google Scholar 

  17. Konstantianos DG, Ioannou PC, Efstathiou CE (1991) Analyst 116:373–378

    CAS  PubMed  Google Scholar 

  18. Santoni G, Fabbri L, Gratteri P, Renzi G, Pinzauti S (1992) Int J Pharm 80:263–266

    Article  CAS  Google Scholar 

  19. Di Pietra AM, Gatti R, Andrisano V, Cavrini V (1996) J Chromatogr A 729:355–361

    Article  PubMed  Google Scholar 

  20. Franeta JT, Agbaba D, Eric S, Pavkov S, Aleksic M, Vladimirov S (2002) Il Farmaco 57:709–713

    Article  CAS  PubMed  Google Scholar 

  21. Garrido JMPJ, Lima JLFC, Matos CD (2000) Collect Czech Chem C 65:954–962

    Article  CAS  Google Scholar 

  22. Rover L, Garcia CAB, De Oliveira Neto G, Kubota LT, Galembeck F (1998) Anal Chim Acta 366:103–109

    Article  CAS  Google Scholar 

  23. Ferreira VJF, Cavalheiro ACV, Fagnani E, De Morales M, Pezza L, Pezza HR, Melios CB (1999) Anal Sci 15:249–253

    CAS  Google Scholar 

  24. Su Y, Tomassetti M, Sammartino MP, Crescenti G, Campanella L (1995) J Pharmaceut Biomed 13:449 – 457

    Article  CAS  Google Scholar 

  25. Pasekova H, Sales MG, Montenegro MC, Araujo AN, Polasek M (2001) J Pharm Biomed Anal 24:1027–1036

    Article  CAS  PubMed  Google Scholar 

  26. Milagres BG, Oliveira Neto G, Kubota LT, Yamanaka H (1997) Anal Chim Acta 347:35–41

    Article  Google Scholar 

  27. Catarino RIL, Garcia MBQ, Lapa RAS, Lima JLFC, Barrado E (2002) J AOAC Int 85:1253–1259

    CAS  PubMed  Google Scholar 

  28. Quintino MSM, Corbo D, Bertotti M, Angnes L (2002) Talanta 58:943–949

    Article  CAS  Google Scholar 

  29. Popov Ch, Popova M, Popova T (1983) Dok Bolg Akad Nauk 36:1343–1346

    CAS  Google Scholar 

  30. Vogel WH, Snyder R, Schulman MP (1964) J Pharmacol Exp Ther 146:66–73

    CAS  PubMed  Google Scholar 

  31. Jones P, Suggett A (1968) Biochem J 108:833–838

    CAS  PubMed  Google Scholar 

  32. Trinder P (1954) Biochem J 57:301–304

    CAS  PubMed  Google Scholar 

  33. Nelson DP, Kiesow LA (1972) Anal Biochem 49:474–478

    CAS  PubMed  Google Scholar 

  34. Jones P, Wynne-Jones WFK (1962) T Faraday Soc 58:1148–1158

    CAS  Google Scholar 

  35. Kremer ML (1983) J Chem Soc Farad T 1 79:2125–2131

    CAS  Google Scholar 

  36. Michaelis L, Menten M (1913) Biochem Z 49:333–369

    CAS  Google Scholar 

  37. Lineweaver H, Burke D (1934) J Am Chem Soc 56:658–666

    CAS  Google Scholar 

  38. Bonnichsen RK, Chance B, Theorell H (1947) Acta Chem Scand 1:685–709

    Google Scholar 

  39. Beers RF, Sizer IW (1952) J Biol Chem 195:133–140

    CAS  Google Scholar 

  40. Gelpi JL, Aviles JJ, Busquets M, Imperial S, Mazo A, Cortes A (1993) J Chem Educ 70:805–816

    CAS  Google Scholar 

  41. Kellner R, Mermet JM, Otto M, Widmer HM (1998) Analytical Chemistry. Wiley-VCH, Weinheim, Germany

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Mureşanu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mureşanu, C., Copolovici, L. Kinetic method for acetylsalicylic acid determination based on its inhibitory effect upon the catalytic decomposition of H2O2 . Anal Bioanal Chem 378, 1868–1872 (2004). https://doi.org/10.1007/s00216-003-2470-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-2470-4

Keywords

Navigation