Skip to main content
Log in

Anodic stripping voltammetric determination of mercury using multi-walled carbon nanotubes film coated glassy carbon electrode

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An electrochemical method for the determination of trace levels of mercury based on a multi-walled carbon nanotubes (MWNT) film coated glassy carbon electrode (GCE) is described. In 0.1 mol L−1 HCl solution containing 0.02 mol L−1 KI, Hg2+ was firstly preconcentrated at the MWNT film and then reduced at −0.60 V. During the anodic potential sweep, reduced mercury was oxidized, and then a sensitive and well-defined stripping peak at about −0.20 V appeared. Under identical conditions, a MWNT film coated GCE greatly enhances the stripping peak current of mercury in contrast to a bare GCE. Low concentrations of I remarkably improve the determining sensitivity, since this increases the accumulation efficiency of Hg2+ at the MWNT film coated GCE. The stripping peak current is proportional to the concentration of Hg2+ over the range 8×10−10–5×10−7 mol L−1. The lowest detectable concentration of Hg2+ is 2×10−10 mol L−1 at 5 min accumulation. The relative standard deviation (RSD) at 1×10−8 mol L−1 Hg2+ was about 6% (n=10). By using this proposed method, Hg2+ in some water samples was determined, and the results were compared with those obtained by atomic absorption spectrometry (AAS). The two results are similar, suggesting that the MWNT-film coated GCE has great potential in practical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Navrátilová Z, Kula P (1992) Electroanalysis 4:683

    Google Scholar 

  2. Cai X, Kalcher K, Diewald W, Newhhold C, Magee RJ (1993) Fresenius J Anal Chem 345:25–31

    CAS  Google Scholar 

  3. Turyan I, Erichsen T, Schuhmann W, Mandler D (2001) Electroanalysis 13:79–82

    CAS  Google Scholar 

  4. Doménech A, Doménech-Carbó MT, España EE, Soriano MD (1999) The Analyst 124:1661–1667

    Article  Google Scholar 

  5. Faller C, Stojko NY, Brainina KZ (1999) Anal Chim Acta 396:195–202

    CAS  Google Scholar 

  6. Huang WS, Yang CH, Zhang SH (2002) Anal Bioanal Chem 374:998

    Article  CAS  PubMed  Google Scholar 

  7. Iijima S (1991) Nature 354:56

    CAS  Google Scholar 

  8. Wong S, Joselevich E, Woolley A, Cheung C, Lieber C (1998) Nature 394:52

    Article  CAS  PubMed  Google Scholar 

  9. De Heer WA, Chatelain A, Ugarte D (1995) Science 270:1179

    Google Scholar 

  10. Baughman RH, Cui CC, Zakhidov AA, Iqbal,Z, Barisci JN, Spinks GM, Wallace GG, Mazzoldi A, Rossi DD, Rinzler AG, Jaschinski O, Roth S, Kertes M (1999) Science 284:1340

    CAS  PubMed  Google Scholar 

  11. Tans S, Verschueren A, Dekker C (1998) Nature 393:49

    Article  CAS  Google Scholar 

  12. Che GL, Lakschmi BB, Fisher ER, Martin CR (1998) Nature 393:346

    Article  Google Scholar 

  13. Chen P, Wu X, Lin J, Tan KL (1999) Science 285:91

    Article  CAS  PubMed  Google Scholar 

  14. Kong J, Franklin NR, Zhou CW, Chapline MG, Peng S, Cho K, Dai DJ (2000) Science 287:622

    Article  CAS  PubMed  Google Scholar 

  15. Wang J, Musameh M, Lin Y (2003) J Am Chem Soc 125:2408

    Article  CAS  PubMed  Google Scholar 

  16. Luo HX, Shi ZJ, Li NQ, Gu ZN, Zhuang QK (2001) Anal Chem 73:915

    Article  CAS  PubMed  Google Scholar 

  17. Wu FH, Zhao GC, Wei XW (2002) Electrochem Commun 4:690

    Article  CAS  Google Scholar 

  18. Musamech M, Wang J, Merkoci A, Lin YH (2002) Electrochem Commun 4:743

    Article  Google Scholar 

  19. Sun YY, Fei JJ, Wu KB, Hu SS (2003) Anal Bioanal Chem 375:544

    CAS  PubMed  Google Scholar 

  20. Tsang SC, Chen YK, Harris PJF, Green MLH (1994) Nature 372:159

    Google Scholar 

  21. Anson FC, Barclay DJ (1968) Anal Chem 40:1791

    CAS  Google Scholar 

  22. Ajayan PM (1999) Chem Rev 99:1787

    Article  CAS  Google Scholar 

  23. Bravo-Sánchez LR, Vicente de la Riva BS, Costa-Fernández JM, Pereiro R, Sanz-Medel A (2001) Talanta 55:1071

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The author is grateful to the Natural Science Foundation of Hubei Provincial Department of Education (2002a00012) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongchao Yi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi, H. Anodic stripping voltammetric determination of mercury using multi-walled carbon nanotubes film coated glassy carbon electrode. Anal Bioanal Chem 377, 770–774 (2003). https://doi.org/10.1007/s00216-003-2136-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-2136-2

Keywords

Navigation