Skip to main content
Log in

Determination of alcohol content in beverages using short-wave near-infrared spectroscopy and temperature correction by transfer calibration procedures

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This paper reports the utilization of short-wave near-infrared (SW-NIR) transmission spectroscopy for rapid and conclusive analysis of alcoholic content (% v/v) in beverages. This spectral region is interesting because common visible diode array spectrometers can be utilized, reducing time and costs in comparison with traditional near-infrared or mid-infrared instruments. A correction of external temperature influence is necessary, and for this purposes two calibration transfer procedures were compared: piecewise direct standardization (PDS) and orthogonal signal correction (OSC). The RMSEP found for the alcoholic content model at 20 °C was 0.13% v/v and, after application of transfer calibration procedures at other temperatures (15, 25, 30 and 35 °C) using the model built at 20 °C, errors of the same order of magnitude were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1. A
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5. A
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. AOAC (1997) Official methods of analysis of AOAC international 950.04, 16th edn. AOAC International, Gaithersburg

  2. AOAC (1997) Official methods of analysis of AOAC international 942.06, 16th edn. AOAC International, Gaithersburg

  3. Amerine MA, Cruess WV (1983) The technology of wine making. AVI, West Point

  4. Santos SRB, de Araujo MCU, Barbosa RA (2002) Analyst 127:324–327

    Article  Google Scholar 

  5. Yarita T, Nakajima R, Otsuka S, Ihara T, Takatsu A, Shibukawa M (2002) J Chromatogr A 976:387–391

    Article  CAS  PubMed  Google Scholar 

  6. Shreyer SK, Mikkelsen SR (2000) Sens Actuators B 71:147–153

    Article  Google Scholar 

  7. Van den Berg FWJ, Van Osenbruggen WA, Smilde AK (1997) Proc Contr Qual 9:51–57

    Google Scholar 

  8. Saranwong S, Sornsrivichai J, Kawano S (2001) J Near-infrared Spectrosc 9:287–295

    Google Scholar 

  9. Solberg C, Fredriksen G (2001) J Near-infrared Spectrosc 9:221–228

    Google Scholar 

  10. Guthrie J, Wedding B, Walsh K (1998) J Near-infrared Spectrosc 6:259–265

    Google Scholar 

  11. LitaniBarzilai I, Sela I, Bulatov V, Zilberman I, Schechter I (1997) Anal Chim Acta 339:193–199

    Article  CAS  Google Scholar 

  12. Carlini P, Massantini R, Mencarelli F (2000) J Agric Food Chem 48:5236–5242

    Article  CAS  PubMed  Google Scholar 

  13. Venel C, Mullen AM, Downey G, Troy DJ (2001) J Near-infrared Spectrosc 9:185–198

    Google Scholar 

  14. Kelly JJ, Barlow CH, Jinguji TM, Callis JB (1989) Anal Chem 61:313–320

    CAS  Google Scholar 

  15. Phelan MK, Barlow CH, Kelly JJ, Jinguji TM, Callis JB (1989) Anal Chem 61:1419–1424

    CAS  Google Scholar 

  16. Mayes DM, Callis JB (1989) Appl Spectrosc 43:27–32

    CAS  Google Scholar 

  17. Martens H, Naes T (1989) Multivariate calibration. Wiley, New York

  18. Geladi P, Kowalski BR (1986) Anal Chim Acta 185:1–17

    CAS  Google Scholar 

  19. Verbeke J (1998) Handbook of chemometrics and qualimetrics: part B. Elsevier, Amsterdam

    Google Scholar 

  20. Wulfert F, Kok WT, Smilde AK (1998) Anal Chem 70:1761–1767

    Article  Google Scholar 

  21. Wulfert F, Kok WT, de Noord OE, Smilde AK (2000) Anal Chem 72:1639–1644

    Article  PubMed  Google Scholar 

  22. Libnau FO, Kvalheim OM, Christy AA, Toft J (1994) Vib Spectrosc 7:243–254

    Article  CAS  Google Scholar 

  23. Paquette J, Jolicoeur C (1977) J Solution Chem 6:403–428

    CAS  Google Scholar 

  24. Czarnecki MA, Maeda H, Ozaki Y, Suzuki M, Iwahashi M (1998) J Phys Chem 102:9117–9123

    Article  CAS  Google Scholar 

  25. Czarnecki MA, Maeda H, Ozaki Y, Suzuki M, Iwahashi M (1998) Appl Spectrosc 52:994–1000

    CAS  Google Scholar 

  26. Maeda H, Wang Y, Ozaki Y, Suzuki M, Czarnecki MA, Iwahashi M (1999) Chemom Intell Lab Systems 45:121–130

    Article  CAS  Google Scholar 

  27. Bouveresse E, Massart DL (1996) Vib Spectrosc 11:3–15

    Article  CAS  Google Scholar 

  28. de Noord OE (1994) Chemom Intell Lab Systems 25:85–97

    Article  Google Scholar 

  29. Fearn T (2001) J Near-infrared Spectrosc 9:229–244

    Google Scholar 

  30. Feudale RN, Woody NA, Tan H, Myles AJ, Brown SD, Ferré J (2002) Chemom Intell Lab Systems 64:181–192

    Article  CAS  Google Scholar 

  31. Swierienga H, Wulfert F, de Noord OE, Weijer AP, Smilde AK, Buydens LMC (2000) Anal Chim Acta 411:121–135

    Article  Google Scholar 

  32. Wold S, Kullberg H, Josefson M, Svensson O, Sjoblom J (1998) Chemom Intell Lab Systems 44:229–244

    Article  Google Scholar 

  33. Brazilian Ministery of Agriculture (2002) Decree number 4072

  34. Wise BM, Gallagher NB (1995) PLS Toolbox for use with Matlab version 2.1. Eigenvector Technologies, Manson

  35. Savitzky A, Golay MJE (1964) Anal Chem 36:1627–1639

    CAS  Google Scholar 

  36. Kennard RW, Stone LA (1969) Technometrics 11:137–148

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronei J. Poppi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barboza, F.D., Poppi, R.J. Determination of alcohol content in beverages using short-wave near-infrared spectroscopy and temperature correction by transfer calibration procedures. Anal Bioanal Chem 377, 695–701 (2003). https://doi.org/10.1007/s00216-003-2128-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-2128-2

Keywords

Navigation