Skip to main content

Advertisement

Log in

Evaluations of solid electrodes for use in voltammetric monitoring of heavy metals in samples from metallurgical nickel industry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Evaluation of different solid electrode systems for detection of zinc, lead, cobalt, and nickel in process water from metallurgical nickel industry with use of differential pulse stripping voltammetry has been performed. Zinc was detected by differential pulse anodic stripping voltammetry (DPASV) on a dental amalgam electrode as intermetallic Ni–Zn compound after dilution in ammonium buffer solution. The intermetallic compound was observed at −375 mV, and a linear response was found in the range 0.2–1.2 mg L−1 (r 2=0.98) for 60 s deposition time. Simultaneous detection of nickel and cobalt in the low μg L−1 range was successfully performed by use of adsorptive cathodic stripping voltammetry (AdCSV) of dimethylglyoxime complexes on a silver–bismuth alloy electrode, and a good correlation was found with corresponding AAS results (r 2=0.999 for nickel and 0.965 for cobalt). Analyses of lead in the μg L−1 range in nickel-plating solution were performed with good sensitivity and stability by DPASV, using a working electrode of silver together with a glassy carbon counter electrode in samples diluted 1:3 with distilled water and acidified with H2SO4 to pH 2. A new commercial automatic at-line system was tested, and the results were found to be in agreement with an older mercury drop system. The stability of the solid electrode systems was found to be from one to several days without any maintenance needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4. a
Fig. 5.
Fig. 6a,b.
Fig. 7.

Similar content being viewed by others

References

  1. Lam MT, Murimboh J, Hassan NM, Chakrabarti CL (2001) Electroanalysis 2:94–99

    Article  Google Scholar 

  2. Smolyakov BS, Zhigula MV (2001) Mendeleev Commun 3:122–124

    Article  Google Scholar 

  3. Berbel F, Corte's J, Jose' Di'az-Cruz M, Arino C, Esteban M (1998) Electroanalysis 6:417–422

    Article  Google Scholar 

  4. Bond AM (1999) Anal Chim Acta 400:333–379

    Article  CAS  Google Scholar 

  5. Brainina K, Henze G, Stojko N, Malakhova N, Faller C (1999) Fresenius J Anal Chem 364:285–295

    Article  CAS  Google Scholar 

  6. Colombo C, van den Berg CMG (1997) Anal Chim Acta 337:29–40

    Article  CAS  Google Scholar 

  7. Zuman P (2000) Anal Lett 2:163–174

    Google Scholar 

  8. Mikkelsen Ø, Schrøder KH (2000) Anal Lett 15:3253–3269

    Google Scholar 

  9. Mikkelsen Ø, Schrøder KH (2000) The Analyst 12:2163–2165

    Article  Google Scholar 

  10. Mikkelsen Ø, Schrøder KH, Aarhaug TA (2001) Collect Czech Chem Commun 3:465–472

    Article  Google Scholar 

  11. Mikkelsen Ø, Schrøder KH (2002) Anal Chim Acta 458:1–249

    Article  Google Scholar 

  12. Mikkelsen Ø, Schrøder KH (2003) Electroanalysis 8:679–687

    Article  Google Scholar 

  13. Dental materials. Alloys for dental amalgam International standard ISO 1559:1995(E) /NS-ISO, pp 1559–1999

    Google Scholar 

  14. Statement on the toxicity of dental amalgam. Committee on toxicity of chemicals in food, consumer products and the environment (1997) Department of Health UK

  15. Eiskjaer M, Arenholdt-Bindslev D (1994) J Dent Res 4:981

    Google Scholar 

  16. Zen JM, Yang CC, Kumar AS (2002) Anal Chim Acta 464:229–235

    Article  CAS  Google Scholar 

  17. Bonfil Y, Brand M, Kirowa-Eisner E (2002) Anal Chim Acta 464:99–114

    Article  CAS  Google Scholar 

  18. Bagel O, Lagger G, Girault HH, Brack D, Loyall U, Schäfer H (2001) Electroanalysis 2:100–103

    Article  Google Scholar 

  19. Diederich HJ, Meyer S, Scholz F (1994) Fresenius J Anal Chem 349:670–675

    CAS  Google Scholar 

  20. Cordon F, Ramírez SA, Gordillo GJ (2002) J Electroanal Chem 534:131–141

    Article  CAS  Google Scholar 

  21. Ensafi AA, Zarei K (2000) Talanta 52:435–440

    Article  CAS  Google Scholar 

  22. Safavi A, Shams E (2000) Talanta 51:1117–1123

    Article  CAS  Google Scholar 

  23. Palrecha MM (1995) Fresenius J Anal Chem 351:800–801

    CAS  Google Scholar 

  24. Opydo J (2001) Mikrochim Acta 137:157–162

    Article  CAS  Google Scholar 

  25. Kirowa-Eisner E, Brand M, Tzur D (1999) Anal Chim Acta 385:325–335

    Article  CAS  Google Scholar 

  26. Mikkelsen Ø, Schrøder KH (2001) Electroanalysis 13:687–692

    Article  CAS  Google Scholar 

  27. Saterlay AJ, Compton RG (2000) Fresenius J Anal Chem 367:308–313

    Article  CAS  PubMed  Google Scholar 

  28. Hyde ME, Compton RG (2002) J Electroanal Chem 531:19–24

    Article  CAS  Google Scholar 

  29. Reisse J, Francois H, Vandercammen J, Fabre O, Kirsch-de Mesmaeker A, Maerschalk C, Delplancke JL (1994) Electrochim Acta 39:37–39

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Øyvind Mikkelsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikkelsen, Ø., Skogvold, S., Schrøder, K. et al. Evaluations of solid electrodes for use in voltammetric monitoring of heavy metals in samples from metallurgical nickel industry. Anal Bioanal Chem 377, 322–326 (2003). https://doi.org/10.1007/s00216-003-2102-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-2102-z

Keywords

Navigation