Skip to main content
Log in

Determination of protonation constants of some fluorinated polyamines by means of 13C NMR data processed by the new computer program HypNMR2000. Protonation sequence in polyamines

  • Special Issue Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract.

The pK a values of 6-fluoro-4,8-diazadodecane-1,12-diamine (6-fluorospermine) (1), 6,6-difluoro-4,8-diazadodecane-1,12-diamine (6,6-difluorospermine) (2), 6-fluoro-4-azaoctane-1,8-diamine (6-fluorospermidine) (3) and 6,6-difluoro-4-azaoctane-1,8-diamine (6,6-difluorospermidine) (4) in D2O solution have been determined at 40 °C from 13C NMR chemical shifts data using the new computer program HypNMR2000. The enthalpies of protonation of compounds 1–4 and the parent amines spermine (5) and spermidine (6) have been determined from microcalorimetric titration data. The values of ΔH° were used to derive basicity constants relative to 25 °C. The NMR data have been analysed by two different methods to obtain information on the protonation sequence in the polyamines 1–5. The protonation sequence for spermine is related to its biological activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.  1.
Fig.  2.
Fig.  3.
Fig.  4.
Fig.  5.
Fig.  6.
Fig.  7.
Fig.  8.
Fig.  9.

Similar content being viewed by others

Abbreviations

PKC :

Protein kinase C

PS :

Phosphatidylserine

VB :

Microsoft Visual Basic

References

  1. Schuber F (1989) Biochem J 260:1-10.

    CAS  PubMed  Google Scholar 

  2. Pegg AE (1988) Cancer Res 48:759-774.

    CAS  PubMed  Google Scholar 

  3. Heby O, Persson L (1990) Trends Biochem Sci 15:153-158.

    CAS  PubMed  Google Scholar 

  4. Schipper RG, Penning LC, Verhofstad AAJ (2000) Semin Cancer Biol 10:244-258.

    Google Scholar 

  5. Thomas T, Thomas TJ (2001) Cell Mol Life Sci 58:244-258.

    PubMed  Google Scholar 

  6. Williams K (1997) Cell Signal 9:1-13.

    CAS  PubMed  Google Scholar 

  7. Williams K (1997) Biochem J 325:289-297.

    PubMed  Google Scholar 

  8. Moruzzi MS, Marverti G, Piccinini G, Frassineti C, Monti MG (1993) Mol Cell Biochem 124:1-9.

    PubMed  Google Scholar 

  9. Moruzzi MS, Barbiroli B, Monti MG, Tadolini B, Hakim G, Mezzetti G (1987) Biochem J 247:175-180.

    PubMed  Google Scholar 

  10. Otieno MA, Kensler TW (2000) Cancer Res 60:4391-4396.

    PubMed  Google Scholar 

  11. Bertoluzza A, Fagnano C, Finelli P, Morelli MA, Simoni R, Tosi R (1983) J Raman Spectrosc 14:386-394.

    CAS  Google Scholar 

  12. Martell AE, Motekaitis RJ (1992) Determination and use of stability constants. VCH Publishers, Inc., New York

  13. Rossotti FJC, Rossotti H (1961) The determination of stability constants and other equilibrium constants in solution. McGraw-Hill, New York

  14. Rossotti H (1969) Chemical applications of potentiometry. Van Nostrand, London

  15. Alves S, Pina F, Albelda MT, Garcia-España E, Soriano C, Luis SV (2001) Eur J Inorg Chem 2:405-412.

    Article  Google Scholar 

  16. Felemez M, Bernard P, Schlewer G, Spiess B (2000) J Am Chem Soc 122:3156-3165.

    Article  Google Scholar 

  17. Hägele G, Szakács Z, Ollig J, Hermens S, Pfaff C (2000) Heteroatom Chemistry 11:562-582.

    Article  Google Scholar 

  18. Barbaro P, Bianchini C, Capannesi G, Luca LD, Laschi F, Petroni D, Salvadori PA, Vacca A, Vizza F (2000) J Chem Soc Dalton Trans 2393-2401.

  19. Formica M, Fusi V, Micheloni M, Pontellini R, Romani P (2000) Polyhedron 19:2501-2505.

    Article  Google Scholar 

  20. Jano I, Hardcastle JE (1999) Anal Chim Acta 390:267-274.

    Article  Google Scholar 

  21. Sroczynski D, Grzejdziak A, Nazarski RB (1999) J Incl Phen Macrocycl Chem 35:251-260.

    Article  Google Scholar 

  22. Achour B, Costa J, Delgado R, Garrigues E, Geraldes CFGC, Korber N, Nepveu F, Prata MI (1998) Inorg Chem 37:2729-2740.

    Article  PubMed  Google Scholar 

  23. Hardcastle JE, Jano I (1998) J Chromatogr 717:39-56.

    Article  Google Scholar 

  24. Huskens J, Torres DA, Kovacs Z, André JP, Geraldes CFGC, Sherry AD (1997) Inorg Chem 36:1495-1503.

    CAS  PubMed  Google Scholar 

  25. PerisicJanjic N, Arman L, Lazarevic M (1997) Spectrosc Lett 30:1037-1048.

    CAS  Google Scholar 

  26. Manning TJ, Tonui P, Miller A, Toporek S, Powell D (1996) Biochem Biophys Res Commun 226:796-800.

    Article  PubMed  Google Scholar 

  27. Anichini A, Fabbrizzi L, Barbucci R, Mastroianni A (1977) J Chem Soc Dalton Trans 2225-2227.

  28. Chapman D, Lloyd DR, Prince RH (1963) J Chem Soc 3645-3658.

  29. Nakamoto K, Morimoto Y, Martell AE (1963) J Am Chem Soc 85:309-313.

    CAS  Google Scholar 

  30. Frassineti C, Ghelli S, Gans P, Sabatini A, Moruzzi MS, Vacca A (1995) Anal Biochem 231:374-382.

    Article  PubMed  Google Scholar 

  31. Aikens DA, Bunce SC, Onasch OF, Schwartz HM, Hurwitz C (1983) J Chem Soc Chem Commun 43-45.

  32. Takeda Y, Semejima K, Nagano K, Watanabe M, Sugeta H, Kyogoku Y (1983) Eur J Biochem 130:383-389.

    PubMed  Google Scholar 

  33. Kimberly MM, Goldstein JH (1981) Anal Chem 53:789-793.

    CAS  Google Scholar 

  34. Delfini M, Segre AL, Conti F, Barbucci R, Barone V, Ferruti P (1980) J Chem Soc Perkin Trans 2 900-903.

    Google Scholar 

  35. Davies CW (1962) Ion Association. Butterworths, London

  36. Smith RM, Martell AE (1997), U.S. Department of Commerce, National Institute of Standards and Technology, Gaithersburg MD 20899 (U.S.A.).

  37. Cini R, Giorgi G, Masi D, Sabatini A, Vacca A (1991) J Chem Soc Perkin Trans 2 765-771.

    Google Scholar 

  38. Vacca A (1996), University of Florence.

  39. Baillon JG, Mamont PS, Wagner J, Gerhart F, Lux P (1988) Eur J Biochem 176:237-242.

    PubMed  Google Scholar 

  40. Dagnall SP, Hague DN, McAdam ME, Moreton AD (1985) J Chem Soc Faraday Trans 81:1483-1494.

    CAS  Google Scholar 

  41. Palmer BN, Powell HKJ (1976) J Chem Soc Dalton Trans 2089-2092.

  42. Alderighi L, Gans P, Ienco A, Peters D, Sabatini A, Vacca A (1999) Coord Chem Rev 184:311-318.

    Article  Google Scholar 

  43. Barbucci R, Fabbrizzi L, Paoletti P, Vacca A (1973) J Chem Soc Dalton Trans 1763-1767.

  44. Onasch OF, Aikens DA, Bunce SC, Schwartz H, Nairn D, Hurwitz C (1984) Biophys Chem 19:245-253.

    Article  Google Scholar 

  45. Aikens DA, Bunce SC, Onasch OF, Parker R, Hurwitz C, Clemans S (1983) Biophys Chem 17:67-74.

    Article  PubMed  Google Scholar 

  46. Hague DN, Moreton AD (1994) J Chem Soc Perkin Trans 2 265-270.

    Google Scholar 

  47. Dagnall SP, Hague DN, McAdam ME (1984) J Chem Soc Perkin Trans 2 1111-1114.

    Google Scholar 

  48. Borkovec M, Koper GJM (2000) Anal Chem 72:3272-3279.

    Article  PubMed  Google Scholar 

  49. Powell MJD (1964) Computer J 7:155-161.

    Google Scholar 

  50. Ohki S, Duax J (1986) Biochim Biophys Acta 861:177-186.

    Article  PubMed  Google Scholar 

  51. Meers P, Hong K, Bentz J, Papahadjopoulos D (1986) Biochemistry 25:3109-3118.

    PubMed  Google Scholar 

  52. Tadolini B, Cabrini L, Varani E, Sechi AM (1985) Biog Amines 3:87-96.

    CAS  Google Scholar 

  53. Chung L, Kaloyanides G, McDaniel R, McLaughlin A, McLaughlin S (1985) Biochemistry 24:442-452.

    PubMed  Google Scholar 

  54. Gold M, Powell HKJ (1976) J Chem Soc Dalton Trans 230-233.

  55. Dagnall SP, Hague DN, McAdam ME (1984) J Chem Soc Perkin Trans 2 435-440.

    Google Scholar 

Download references

Acknowledgements.

The Italian Ministry for Education, University and Research, MIUR, and the Italian National Council for Research, CNR, are gratefully acknowledged for funding. The authors are grateful to Centro Interdipartimentale Grandi Strumenti dell'Università di Modena, for allowing the use of the AMX-400 WB Bruker spectrometer. We thank Dr Francesca Benevelli, formerly at the Centro Grandi Strumenti dell'Università di Pavia, for technical assistance with the NMR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Vacca.

Additional information

Presented at the Spanish-Italian Congress on the Thermodynamics of Metal Complexes, Santiago de Compostela, Spain, June 2–6, 2002

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frassineti, C., Alderighi, L., Gans, P. et al. Determination of protonation constants of some fluorinated polyamines by means of 13C NMR data processed by the new computer program HypNMR2000. Protonation sequence in polyamines. Anal Bioanal Chem 376, 1041–1052 (2003). https://doi.org/10.1007/s00216-003-2020-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-2020-0

Keywords

Navigation