Skip to main content
Log in

Effect of Solvent Composition on Protonation Constants of Some Glycine Dipeptides

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Stoichiometric protonation constants (log10 K 1 and log10 K 2) of some aliphatic dipeptides (Gly–Tyr, Gly–Phe, Gly–Val, Gly–Leu, Gly–Thr, Gly–Met and Gly–Pro) were determined potentiometrically in 20, 40, and 60 % (v/v) 1,4-dioxane–water and dimethyl sulfoxide–water mixtures at 25.0 (±0.1) °C with an ionic strength of 0.10 mol·L−1 sodium chloride. The protonation constants were calculated with the computer program PKAS and selection of the best fit chemical models is based on the statistical parameters. The effects of solvent composition on these protonation constants are discussed to determine the factors which control these processes. It has been observed that, while the correlation between log10 K 1 and log10 K 2 with the percentages of dimethyl sulfoxide in the dimethyl sulfoxide–water mixtures are not linear, these values linearly increase as the concentration of 1,4-dioxane increases in the solvent mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Doğan, A., Özel, A.D., Kiliç, E.: The protonation equilibria of selected glycine dipeptides in ethanol–water mixture: solvent composition effect. Amino Acids 36, 373–379 (2009)

    Article  Google Scholar 

  2. Kiani, F., Rostami, A.A., Sharifi, S., Bahadori, A.: Calculation of acidic dissociation constants of glycylglycine in water at different temperatures using ab initio methods. J. Mol. Struct. Theochem. 956, 20–25 (2010)

    Article  CAS  Google Scholar 

  3. Namazian, M., Halvani, S.: Calculations of pK a values of carboxylic acids in aqueous solution using density functional theory. J. Chem. Thermodyn. 38, 1495–1502 (2006)

    Article  CAS  Google Scholar 

  4. Avdeef, A.: Absorption and Drug Development: Solubility, Permeability, and Charge State. Wiley, New Jersey (2003)

    Book  Google Scholar 

  5. Kozlowski, H., Bal, W., Dyba, M., Kowalil-Jankowska, T.: Specific structure–stability relations in metallopeptides. Coord. Chem. Rev. 184, 319–346 (1999)

    Article  CAS  Google Scholar 

  6. Mendieta, J., Diaz-Cruz, M.S., Tauler, R., Esteban, M.: Application of multivariate curve resolution to voltametric data. II. Study of metal-binding properties of the peptides. Anal. Biochem. 240, 134–141 (1996)

    Article  CAS  Google Scholar 

  7. Sigel, H. (ed.): Metal Ions in Biological Systems. Marcel Dekker, vol 2, New York (1973)

  8. Blagojevic, V., Chramow, A., Schneider, B.B., Covey, T.R., Bohme, D.K.: Differential mobility spectrometry of ısomeric protonated dipeptides: modifier and field effects on ıon mobility and stability. Anal. Chem. 83, 3470–3476 (2011)

    Article  CAS  Google Scholar 

  9. Kilyen, M., Forgo, P., Lakatos, A., Dombi, G., Kiss, T., Kotsakis, N., Salifoglou, A.: Interaction of Al(III) with the peptides AspAsp and AspAspAsp. J. Inorg. Biochem. 94, 207–213 (2003)

    Article  CAS  Google Scholar 

  10. Facchin, C., Torre, M.H., Kremer, E., Piro, E.O., Castellano, E.E., Baran, E.J.: Synthesis and characterization of three new dipeptide complexes. J. Inorg. Biochem. 89, 174–180 (2002)

    Article  CAS  Google Scholar 

  11. Diaz-Cruz, M.S., Diaz-Cruz, J.M., Mendieta, J., Tauler, R., Esteban, M.: Soft-and hard modeling approaches for the determination of stability constants of metal–peptide systems by voltammetry. Anal. Biochem. 279, 189–201 (2000)

    Article  CAS  Google Scholar 

  12. Köseoğlu, F., Kiliç, E., Doğan, A.: Studies on the protonation constants and solvation of α-amino acids in dioxane–water mixtures. Anal. Biochem. 277, 243–246 (2000)

    Article  Google Scholar 

  13. Canel, E., Gültepe, A., Doğan, A., Kiliç, E.: The determination of protonation constants of some amino acids and their esters by potentiometry in different media. J. Solution Chem. 35, 5–19 (2006)

    Article  CAS  Google Scholar 

  14. Fiol, S., Brandariz, I., Sasrte de Vicente, M.: The ionization constants of alanine in NaCl at 25 °C Effect of the ionic strength based on three models. Talanta 42, 797–801 (1995)

    Article  CAS  Google Scholar 

  15. Partanen, I.J.: Calculation of the first and second stoichiometric dissociation constants of glycine in aqueous sodium chloride solutions at 298.15 K. Ber. Bunsenges. Phys. Chem. 102, 855–864 (1998)

    Article  CAS  Google Scholar 

  16. Zekarias, M.T., Hirpaye, B.Y., Rao, G.N.: Effect of dielectric constant on protonation equilibria of glycylglycine in aqueous solutions of propylene glycol and dioxan. Der Pharma Chemica 3, 69–77 (2011)

    CAS  Google Scholar 

  17. Catalan, J., Diaz, D., Garcia-Blanco, F.: Characterization of binary solvent mixtures of DMSO with water and other cosolvents. J. Org. Chem. 66, 5846–5852 (2001)

    Article  CAS  Google Scholar 

  18. Luzar, A., Stefan, J.: Dielectric behaviour of DMSO–water mixtures. A hydrogen bonding model. J. Mol. Liq. 46, 221–238 (1990)

    Article  CAS  Google Scholar 

  19. Mancera, R.L., Chalaris, M., Refsonc, K., Samios, J.: Molecular dynamics simulation of dilute aqueous DMSO solutions. A temperature-dependence study of the hydrophobic and hydrophilic behaviour around DMSO. Phys. Chem. Chem. Phys. 6, 94–102 (2004)

    Article  CAS  Google Scholar 

  20. Shashkov, S.N., Kiselev, M.A., Tioutiounnikov, S.N., Kiselev, A.M., Lesieur, P.: The study of DMSO/water and DPPC/DMSO/water system by means of the X-ray, neutron small angle scattering, calorimetry and IR spectroscopy. Phys. B 271, 184–191 (1999)

    Article  CAS  Google Scholar 

  21. El-Sherif, A.A., Shoukr, M.M., Abd-Elgawad, M.M.A.: Protonation equilibria of some selected α amino acids in DMSO–water mixture and their Cu(II)-complexes. J. Solution Chem. 42, 412–427 (2013)

    Article  CAS  Google Scholar 

  22. Martin, D., Hauthal, H.G.: Dimethylsulphoxide. Van Nostrand Reinhold, Workingham (1975)

    Google Scholar 

  23. Hermandez-Molina, R., Mederos, A., Gili, P., Dominquez, S., Numez, P., Grmain, G., Debaerdemaeker, T.: Coordinating ability in DMSO–water 80:20 wt/wt of the Schiff base N, NO 3,4 toluenebis(salicylideneimine) with divalent cations. Crystal structure of the nickel(II) complex. Inorg. Chim. Acta 256, 319–325 (1997)

    Article  Google Scholar 

  24. Tribolet, R., Malini-Balakrishnan, R., Sigel, H.: Influence of decreasing solvent polarity (dioxane–water mixtures) on the stability and structure of binary and ternary complexes of adenosine 5′-triphosphate and uridine 5′-triphosphate. J. Chem. Soc. Dalton Trans. 11, 2291–2303 (1985)

    Article  Google Scholar 

  25. Doğan, A., Kiliç, E.: Potentiometric studies on the protonation constants and solvation of some α amino acid benzyl- and t-butyl-esters in ethanol–water mixtures. Turk. J. Chem. 20, 41–47 (2005)

    Google Scholar 

  26. Doğan, A., Kiliç, E.: Tautomeric and microscopic protonation constants of amino acids. Anal. Biochem. 365, 7–13 (2007)

    Article  Google Scholar 

  27. Doğan, A., Aslan, N., Canel, E., Kiliç, E.: Solvent effects on the protonation constants of some α amino acid esters in 1,4-dioxane–water mixtures. J. Solution Chem. 39, 1589–1596 (2010)

    Article  Google Scholar 

  28. Gran, G.: Determination of the equivalent point in potentiometric titrations, Part I. Acta Chem. Scand 4, 559–577 (1950)

    Article  CAS  Google Scholar 

  29. Gran, G.: Determination of the equivalent point in potentiometric titrations, Part II. Analyst 77, 661–671 (1952)

    Article  CAS  Google Scholar 

  30. Martell, A.E., Motekaitis, R.J.: The Determination and use of Stability Constants. VCH, Weinheim (1988)

    Google Scholar 

  31. Meloun, M., Havel, J., Högfelt, H.: Computation of Solution Equilibria. Wiley, New York (1988)

    Google Scholar 

  32. Gündüz, T., Kiliç, E., Canel, E.: Protonation constants of some substituted salicylideneanilines in dioxan–water mixtures. Anal. Chim. Acta 282, 489–495 (1993)

    Article  Google Scholar 

  33. Motekaitis, R.J., Martell, A.E.: Program PKAS: a novel algorithm or the computation of successive protonation constants. Can. J. Chem. 60, 1681–1689 (1982)

    Article  Google Scholar 

  34. Kiliç, E., Aslan, N.: Determination of autoprotolysis constants of water–organic solvent mixtures by potentiometry. Microchim. Acta 151, 89–92 (2005)

    Article  Google Scholar 

  35. Demirelli, H.: On the role of the solvent and substituent on the protonation equilibria of disubstituted anilines in dioxane–water mixed solvents. J. Solution Chem. 34, 1283–1295 (2005)

    Article  CAS  Google Scholar 

  36. Jabbari, M., Gharib, F.: Solute–solvent interaction effects on protonation equilibrium of some water-insoluble flavonoids. J. Solution Chem. 40, 561–574 (2011)

    Article  CAS  Google Scholar 

  37. Das, A.K., Kundu, K.K.: Autoprotolysis constants of water + dimethyl sulphoxide mixtures at 25 °C and the related free energies of transfer of OH. J. Chem. Soc. Faraday Trans. 1(69), 730–735 (1973)

    Article  Google Scholar 

  38. Jabbari, M., Gharib, F.: Solvent effects on protonation equilibria of some amino acids and peptides in different aqueous solutions of ethanol. Acta Chim. Slov. 57, 325–331 (2010)

    CAS  Google Scholar 

  39. Sieler, G., Schweitzer-Stenner, R., Holtz, J.S.W., Pajcini, V., Asher, S.A.: Different conformers and protonation states of dipeptides probed by polarized Raman, UV-resonance Raman and FTIR spectroscopy. J. Phys. Chem. B 103, 372–384 (1999)

    Article  CAS  Google Scholar 

  40. Doğan, A., Köseoğlu, F., Kiliç, E.: Studies on the macroscopic protonation constants of some α-amino acids in ethanol–water mixtures. Anal. Biochem. 309, 75–78 (2002)

    Article  Google Scholar 

  41. Taft, R.W., Abboud, J.L.M., Kamlet, M.J.: Linear solvation energy relationships. An analysis of Swain’s solvent “acidity” and “basicity” scales. J. Org. Chem. 49, 2001–2005 (1984)

    Article  CAS  Google Scholar 

  42. Kamlet, M.J., Abboud, J.L.M., Abraham, M.H., Taft, R.W.: Linear solvation energy relationships. A comprehensive collection of the solvatochromic parameters, π * , α, and β, and some methods for simplifying the generalized solvatochromic equation. J. Org. Chem. 48, 2877–2887 (1983)

    Article  CAS  Google Scholar 

  43. Barbosa, J., Barron, D., Beltran, J.L., Buti, S.: On the role of solvent in acid–base equilibria of diuretics in acetonitrile–water mixed solvents. Talanta 45, 807–815 (1998)

    Article  Google Scholar 

  44. Marcus, Y.: The standard partial molar volumes of ions in solution, Part 3. Volumes in solvent mixtures where preferential solvation takes place. J. Solution Chem. 34, 317–331 (2005)

    Article  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pınar Esra Erden.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erden, P.E., Aslan, N., Doğan, A. et al. Effect of Solvent Composition on Protonation Constants of Some Glycine Dipeptides. J Solution Chem 43, 1156–1166 (2014). https://doi.org/10.1007/s10953-014-0191-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-014-0191-2

Keywords

Navigation