Skip to main content

Advertisement

Log in

Quantification of DNA in forensic samples

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Quantification of DNA in a forensic sample is of major importance for proper DNA amplification and STR profiling. Several methods have been developed to quantify DNA, from basic UV spectrometry, through gel-based techniques, to dye staining, blotting techniques, and, very recently, DNA amplification methods (polymerase chain reaction, PCR). Early techniques simply measured total DNA, but newer techniques can specifically measure human DNA while excluding non-human DNA (foodstuff, animal, or bacterial contamination). These newer assays can be faster and less expensive than traditional methods, making them ideal for the busy forensic laboratory. This paper reviews classic and newer quantification techniques and presents methods recently developed by the authors on the basis of PCR of Alu sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. DNA Advisory Board (2000) Forensic Sci Commun, vol 2, http://www.fbi.gov/hq/lab/fsc/backissu/july2000/index.htm

  2. Monroe HN, Fleck A (1966) Methods Biochem Anal 14:113–176

    PubMed  Google Scholar 

  3. Volkin E, Cohn WE (1954) Methods Biochem Anal 1:287–305

    Google Scholar 

  4. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Press, New York, pp E.5–E.7

    Google Scholar 

  5. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1998) Current protocols in molecular biology. Wiley, New York, pp A.3D1–A.3D.8

  6. Le Pecq J, Paoletti C (1966) Anal Biochem 17:100–107

    PubMed  Google Scholar 

  7. Waring M (1965) J Mol Biol 13:269–282

    CAS  PubMed  Google Scholar 

  8. Kubista M, Akerman B, Norden B (1987) Biochemistry 26:4545–4553

    PubMed  Google Scholar 

  9. Portugal J, Waring M (1988) Biochem Biophys Acta 949:158–168

    CAS  PubMed  Google Scholar 

  10. Daxhelet G, Coene M, Hoet P, Cocito C (1989) Anal Biochem 179:401–403

    CAS  PubMed  Google Scholar 

  11. Kapuscinski J (1990) J Histochem Cytochem 38:1323–1329

    CAS  Google Scholar 

  12. Labarca C, Paigen K (1980) Anal Biochem 102:344–352

    CAS  PubMed  Google Scholar 

  13. Tanious A, Veal JM, Buczak H, Ratmeyer LS, Wilson WD (1992) Biochemistry 31:3103–3112

    CAS  PubMed  Google Scholar 

  14. Singer VL, Jones LJ, Yue ST, Haugland RP (1997) Anal Biochem 249:228–238

    CAS  PubMed  Google Scholar 

  15. Haugland RP (2002) Handbook of fluorescent probes and research products, 9th edn. Molecular Probes, Eugene, OR, chap 8.3, pp 300–308

  16. Rye HS, Dabora JM, Quesada MA, Mathies RA (1993) Anal Biochem 208:144–150

    CAS  PubMed  Google Scholar 

  17. Ahn SJ, Costa J, Emanuel JR (1996) Nucleic Acids Res 24:2623–2625

    CAS  PubMed  Google Scholar 

  18. Romppanen EL, Savolainen K, Mononen I (2000) Anal Biochem 279:111–114

    CAS  PubMed  Google Scholar 

  19. Chadwick RB, Conrad MP, McGinnis MD, Johnston-Dow L, Spurgeon SL, Kronick MN (1996) Biotechniques 20:676–683

    CAS  PubMed  Google Scholar 

  20. Buel E, Schwartz M (1993) Appl Theor Electroph 3:253–255

    CAS  Google Scholar 

  21. Buel E, Schwartz M (1995) J Forensic Sci 40:275–278

    CAS  PubMed  Google Scholar 

  22. Jin X, Yue S, Wells KS, Singer VL (1994) FASEB J 8:A1266

    Google Scholar 

  23. Jin X, Yue S, Wells KS, Singer VL (1994) Biophys J 66:A159

    Google Scholar 

  24. Krenke BE, Tereba A, Anderson SJ, Buel E, Culhane S, Finis CJ, Tomsey CS, Zachetti JM, Masibay A, Rabbach DR, Amiott EA, Sprecher CJ (2002) J Forensic Sci 47:773–785

    CAS  PubMed  Google Scholar 

  25. Moretti TR, Baumstark AL, Defenbaugh DA, Keys KM, Smerick JB, Budowle B (2001) J Forensic Sci 46:647–660

    CAS  PubMed  Google Scholar 

  26. LaFountain MJ, Schwartz MB, Svete PA, Walkinshaw MA, Buel E (2001) J Forensic Sci 46:1191–1198

    CAS  PubMed  Google Scholar 

  27. Walsh PS, Varlaro J, Reynolds R (1992) Nucleic Acids Res 20:5061–5065

    CAS  PubMed  Google Scholar 

  28. Waye JS, Willard HF (1986) Nucleic Acids Res 14:6915–6927

    CAS  PubMed  Google Scholar 

  29. Duewer DL, Kline MC, Redman JW, Newall PJ, Reeder DJ (2001) J Forensic Sci 46:1199–1210

    CAS  PubMed  Google Scholar 

  30. Budowle B, Hudlow WR, Lee SB, Klevan L (2001) Biotechniques 30:680–685

    CAS  PubMed  Google Scholar 

  31. Himmelspach M, Gruber F, Antoine G, Falkner FG, Dorner F, Hammerle T (1996) Anal Biochem 242:240–247

    CAS  PubMed  Google Scholar 

  32. Mighell AJ, Markham AF, Robinson PA (1997) FEBS Lett 417:1–5

    CAS  PubMed  Google Scholar 

  33. Schmid CW (1996) Prog Nucleic Acid Res Mol Biol 53:283–319

    CAS  PubMed  Google Scholar 

  34. Ullu E, Tschudi C (1984) Nature 312:171–172

    CAS  PubMed  Google Scholar 

  35. Chen PJ, Cywinski A, Taylor JM (1985) J Virol 54:278–284

    CAS  PubMed  Google Scholar 

  36. Batzer MA, Deininger PL, Hellmann-Blumberg U, Jurka J, Labuda D, Rubin CM, Schmid CW, Zietkiewicz E, Zuckerkandl E (1996) J Mol Evol 42:3–6

    CAS  PubMed  Google Scholar 

  37. Mandrekar MN, Erickson AM, Kopp K, Krenke BE, Mandrekar PV, Nelson R, Peterson K, Shultz J, Tereba A, Westphal N (2001) Croat Med J 42:336–339

    CAS  PubMed  Google Scholar 

  38. Sifis ME, Both K, Burgoyne LA (2002) J Forensic Sci 47:589–592

    CAS  PubMed  Google Scholar 

  39. Andréasson H, Gyllensten U, Allen M (2002) Biotechniques 33:402–411

    PubMed  Google Scholar 

  40. Nicklas JA, Buel E (2003) J Forensic Sci 48:282–291

    CAS  PubMed  Google Scholar 

  41. Nicklas JA, Buel E (2003) J Forensic Sci, in press

Download references

Acknowledgements

The authors would like to thank Marcie LaFountain and Dr Margaret Schwartz for advice, support, and critical review of the manuscript. This work was supported in part under award 2000-IJ-CX-K012 from the Office of Justice Programs, National Institute of Justice, Department of Justice. This review does not necessarily represent the official position of the US Department of Justice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Buel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicklas, J.A., Buel, E. Quantification of DNA in forensic samples. Anal Bioanal Chem 376, 1160–1167 (2003). https://doi.org/10.1007/s00216-003-1924-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-1924-z

Keywords

Navigation