Skip to main content

The Development and Use of Internal Amplification Controls (IACs) with DNA Profiling Kits for Forensic DNA Analysis

  • Protocol
  • First Online:
Forensic DNA Typing Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1420))

  • 2141 Accesses

Abstract

Biological samples recovered for forensic investigations are often degraded and/or have low amounts of DNA; in addition, in some instances the samples may be contaminated with chemicals that can act as PCR inhibitors. As a consequence this can make interpretation of the results challenging with the possibility of having partial profiles and false negative results. Because of the impact of DNA analysis on forensic investigations, it is important to monitor the process of DNA profiling, in particular the amplification reaction. In this chapter we describe a method for the in-house generation and use of internal amplification controls (IACs) with DNA profiling kits to monitor the success of the PCR proces. In the example we show the use of the SGM Plus® kit. These controls can also be used to aid the interpretation of the DNA profile.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. van Oorschot RAH, Phelan DG, Furlong S, Scarfo GM, Holding NL, Cummins MJ (2003) Are you collecting all the available DNA from touched objects? Prog Forensic Genet 9 1239:803–807

    Google Scholar 

  2. Gilbert MTP, Menez L, Janaway RC, Tobin DJ, Cooper A, Wilson AS (2006) Resistance of degraded hair shafts to contaminant DNA. Forensic Sci Int 156:208–212

    Article  CAS  PubMed  Google Scholar 

  3. Broemeling DJ, Pel J, Gunn DC, Mai L, Thompson JD, Poon H et al (2008) An instrument for automated purification of nucleic acids from contaminated forensic samples. JALA 13:40–48

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Cone RW, Hobson AC, Huang M-W (1992) Coamplified positive control detects inhibition of polymerase chain reactions. J Clin Microbiol 30:3185–3189

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ballagi-Pordány A, Belák S (1996) The use of mimics as internal standards to avoid false negatives in diagnostic PCR. Mol Cell Probes 10:159–164

    Article  PubMed  Google Scholar 

  6. Sachadyn P, Kur J (1998) The construction and use of a PCR internal control. Mol Cell Probes 12:259–262

    Article  CAS  PubMed  Google Scholar 

  7. Hoorfar J, Cook N, Malorny B, Wagner M, De Medici D, Abdulmawjood A et al (2003) Making internal amplification control mandatory for diagnostic PCR [2]. J Clin Microbiol 41:5835

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rodríguez-Lázaro D, D’Agostino M, Pla M, Cook N (2004) Construction strategy for an internal amplification control for real-time diagnostic assays using nucleic acid sequence-based amplification: development and clinical application. J Clin Microbiol 42:5832–5836

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hoorfar J, Malorny B, Abdulmawjood A, Cook N, Wagner M, Fach P (2004) Practical considerations in design of internal amplification controls for diagnostic PCR assays. J Clin Microbiol 42:1863–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Abdulmawjood A, Roth S, Bülte M (2002) Two methods for construction of internal amplification controls for the detection of escherichia coli O157 by polymerase chain reaction. Mol Cell Probes 16:335–339

    Article  CAS  PubMed  Google Scholar 

  11. Malorny B, Tassios PT, Rådström P, Cook N, Wagner M, Hoorfar J (2003) Standardization of diagnostic PCR for the detection of foodborne pathogens. Int J Food Microbiol 83:39–48

    Article  CAS  PubMed  Google Scholar 

  12. D’Agostino M, Wagner M, Vazquez-Boland JA, Kuchta T, Karpiskova R, Hoorfar J et al (2004) A validated PCR-based method to detect listeria monocytogenes using raw milk as a food model - towards an international standard. J Food Prot 67:1646–1655

    PubMed  Google Scholar 

  13. Neumaier M, Braun A, Wagener C (1998) Fundamentals of quality assessment of molecular amplification methods in clinical diagnostics. Clin Chem 44:12–26

    CAS  PubMed  Google Scholar 

  14. Stöcher M, Leb V, Berg J (2003) A convenient approach to the generation of multiple internal control DNA for a panel of real-time PCR assays. J Virol Methods 108:1–8

    Article  PubMed  Google Scholar 

  15. Ursi D, Dirven K, Loens K, Ieven M, Goossens H (2003) Detection of mycoplasma pneumoniae in respiratory samples by real-time PCR using an inhibition control. J Microbiol Methods 55:149–153

    Article  CAS  PubMed  Google Scholar 

  16. Abu Al-Soud W, Rådström P (2000) Effects of amplification facilitators on diagnostic PCR in the presence of blood, feces, and meat. J Clin Microbiol 38:4463–4470

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Burkhart CA, Norris MD, Haber M (2002) A simple method for the isolation of genomic DNA from mouse tail free of real-time PCR inhibitors. J Biochem Biophys Methods 52:145–149

    Article  CAS  PubMed  Google Scholar 

  18. Ricci U, Marchi C, Previderè C, Fattorini P (2006) Quantification of human DNA by real-time PCR in forensic casework [cited 13 July 2015]

    Google Scholar 

  19. Koukoulas I, O’Toole FE, Stringer P, Van Oorschot RAH (2008) Quantifiler™ observations of relevance to forensic casework. J Forensic Sci 53:135–141

    Article  CAS  PubMed  Google Scholar 

  20. Kihlgren A, Beckman A, Holgersson S (1998) Using D3S1358 for quantification of DNA amenable to PCR and for genotype screening. Prog Forensic Genet 7 1167:31–33

    CAS  Google Scholar 

  21. von Wurmb-Schwark N, Preusse-Prange A, Heinrich A, Simeoni E, Bosch T, Schwark T (2009) A new multiplex-PCR comprising autosomal and y-specific STRs and mitochondrial DNA to analyze highly degraded material. Forensic Sci Int Genet 3:96–103

    Article  Google Scholar 

  22. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M et al (2012) Primer3-new capabilities and interfaces. Nucleic Acids Res 40:e115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sambrook J, Fritsch EF, Maniatis T (eds) (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Zahra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zahra, N., Goodwin, W. (2016). The Development and Use of Internal Amplification Controls (IACs) with DNA Profiling Kits for Forensic DNA Analysis. In: Goodwin, W. (eds) Forensic DNA Typing Protocols. Methods in Molecular Biology, vol 1420. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3597-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3597-0_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3595-6

  • Online ISBN: 978-1-4939-3597-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics