Skip to main content
Log in

Cathodic adsorptive stripping square-wave voltammetric determination of nifedipine drug in bulk, pharmaceutical formulation and human serum

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Nifedipine is a calcium-channel antagonist drug used in the management of angina pectoris and hypertension through inhibition of calcium influx. A fully validated sensitive cathodic adsorptive stripping square-wave voltammetry procedure was optimized for the determination of the drug at trace levels. The procedure was based on the reduction of the nitrophenyl group after the interfacial accumulation of the drug onto a hanging mercury drop electrode in Britton–Robinson buffer of pH 11.0. The optimal conditions of the procedure were found to be: accumulation potential=–0.9 V vs. Ag/AgCl/KCls), accumulation time=30 s, scan increment=10 mV, pulse amplitude=50 mV and frequency=120 Hz. Under these conditions, a well-defined peak was obtained; its peak current showed a linear dependence on drug concentration in the range of 2×10–9–2×10–7 mol L–1 bulk nifedipine. The mean recoveries based on eight replicate measurements for 1×10–8 and 5×10–8 mol L–1 bulk nifedipine solutions were 98.46±0.86% and 98.23±0.92%, respectively. A detection limit of 3.42×10–10 mol L–1 bulk nifedipine was achieved. The procedure was successfully applied for assay of the drug in tablets and spiked human serum with mean recoveries of 101.95±1.42% and 98.70±0.63%, respectively. The limit of detection of the drug in spiked human serum was found to be 3.90×10–10 mol L–1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. Delgado JN, Remers WA (1998) Textbook of organic medicinal and pharmaceutical chemistry, 10th edn. Lippincott-Raven, Philadelphia, USA, p 590

  2. Mcevoy GK (1990) AHFS drug information. American Society of Hospital Pharmacists, p 851

  3. Schlomann K (1972) Arzneim-Forsch 22:60–62

  4. Umapathi P (1994) Int J Pharmaceutics 108:11–19

    Article  CAS  Google Scholar 

  5. Veronico M, Rango G, Vetuschi C (1995) Spectrosc Lett 28:407–415

    CAS  Google Scholar 

  6. El-Walily AFM (1997) J Pharm Biomed Anal 16:21–30

    Article  PubMed  Google Scholar 

  7. Akira K, Baba S, Aoki S (1998) Chem Pharm Bull 36:3000–3007

    Google Scholar 

  8. Ellis JS, Monkman SC, Seymour RA, Idle JR (1993) J Chromatogr Biomed Appl 621:95–101

    Article  CAS  Google Scholar 

  9. Leguellec C, Bun H, Giocanti M, Durand A (1992) Biomed Chromatogr 6:20–23

    CAS  PubMed  Google Scholar 

  10. Nishioka R, Umeda I, Oi N, Tubata S, Uno K (1991) J Chromatogr Biomed Appl 565:237–246

    Article  CAS  Google Scholar 

  11. Lutz D, Ilias E, Jaeger H (1986) J High Resol Chromatogr Chromatogr Commun 9:397–399

    CAS  Google Scholar 

  12. Kurosawa N, Morishima S, Owada E, Ito K, Ueda K, Takahashi A, Kikuir I (1984) J Pharm Japan 104:775–779

    CAS  Google Scholar 

  13. Martens J, Banditt P, Meyer FP (1994) J Chromatogr B Biomed Appl 660:297–302

    Article  CAS  PubMed  Google Scholar 

  14. Rossel MT, Bogaert MG (1983) J Chromatogr 279:675–680

    Article  PubMed  Google Scholar 

  15. Streel B, Zimmer C, Sibenaler R, Ceceato A (1998) J Chromatogr B 720:119–128

    Article  CAS  Google Scholar 

  16. Bach PR (1983) Clin Chem 29:1344–1348

    CAS  PubMed  Google Scholar 

  17. Patravale VB, Nair VB, Gore SP (2000) J Pharm Biomed Anal 23:623–627

    Article  CAS  PubMed  Google Scholar 

  18. Zaater M, Hasan E, Najib N (2000) Pol J Pharmacol 52:307–312

    CAS  PubMed  Google Scholar 

  19. Patel YP, Patil S, Bhoir IC, Sundaresan M (1998) J Chromatogr A 828:283–286

    Article  CAS  PubMed  Google Scholar 

  20. Mascher H, Vergin H (1988) Chromatographia 25:919–922

    CAS  Google Scholar 

  21. Horvai G, HrabeczyPall A, Horvath V, Klebovich I (1994) Microchim Acta 113:171–178

    CAS  Google Scholar 

  22. Qato MK, Mohamed FA (1999) STP Pharma Sci 9:203–210

    CAS  Google Scholar 

  23. Nakamura I, Takahashi M, Izumi H (1999) J Chromatogr B 729:265–270

    Article  CAS  Google Scholar 

  24. Yrita M, Parra P, Iglesias E, Barbano JM (2000) J Chromatogr A 870:115–119

    Article  PubMed  Google Scholar 

  25. Abou-Auda HS, Najjar TA, Al-Khamis KI, Al-Hadiya BM, Ghilzai NM, Al-Fowzan NF (2000) J Pharm Biomed Anal 22:241–249

    Article  CAS  PubMed  Google Scholar 

  26. Shahriyar SM, Lau-Cam CA (2000) J Liq Chromatogr Relat Technol 23:1253–1265

    Article  CAS  Google Scholar 

  27. Jankowski A, Lamparczyk H (1994) J Chromatogr A 668:469–473

    Article  CAS  PubMed  Google Scholar 

  28. Garcia MA, Solans C, Aramayona JJ, Fraile LJ, Bregante MA, Castillo JR (1998) Talanta 475:1245–1254

    Article  Google Scholar 

  29. Horvath V, HrabeczyPul A, Niegreisz Z, Kocsi E, Horvai G, Godorhazy L, Tolokan A, Klebovich I, BaloghNemes K (1996) J Chromatogr B Biomed Appl 686:211–219

    Article  CAS  PubMed  Google Scholar 

  30. Horvai G, Godorhazy L, Tolokan A, Pungof E (1993) Magyar Kemiai Folyoirat 99:372–381

    CAS  Google Scholar 

  31. Elsayed YM, Niazy EM, Khidr SH (1993) J Clin Pharm Ther 18:325–330

    CAS  Google Scholar 

  32. Ohkubo T, Noro H, Sugawara K (1992) J Pharm Biomed Anal 10:67–70

    Article  CAS  PubMed  Google Scholar 

  33. Teltingiaz M, Kelly MT, Hua C, Smyth ME (1991) J Pharm Biomed Anal 9:889–893

    Article  PubMed  Google Scholar 

  34. Soons PA, Schellens JHM, Roosemalen MCM, Breimer DD (1991) J Pharm Biomed Anal 9:475–484

    Article  CAS  PubMed  Google Scholar 

  35. Beaulieu N, Curran NM, Graham SJ, Sears RW, Lovering EG (1991) J Liq Chromatogr 14:1173–1183

    CAS  Google Scholar 

  36. Fu CJ, Mason WD (1989) Anal Lett 22:2985–3002

    CAS  Google Scholar 

  37. Sadanaga T, Hikida K, Tameto K, Matsushima Y, Ohkura Y (1982) Chem Pharm Bull 30:3807–3809

    CAS  PubMed  Google Scholar 

  38. Guriey BJ, Buice RG, Sidhu P (1985) Ther Drug Monit 7:321–323

    PubMed  Google Scholar 

  39. Suzuki H, Fujiwara S, Kondo S, Sugimoto I (1985) J Chromatogr 341:341–347

    Article  CAS  PubMed  Google Scholar 

  40. Thongnopnua P, Viwatwongsa K (1994) J Pharm Biomed Anal 12:119–125

    Article  CAS  PubMed  Google Scholar 

  41. Miyazaki K, Kohrin N, Arlta T (1984) J Chromatogr 310:219–222

    Article  CAS  PubMed  Google Scholar 

  42. Dankers J, Van den Elshout J, Ahr G, Brendel E, Van der Heiden C (1998) J Chromatogr B 710:115–120

    Article  CAS  Google Scholar 

  43. Dumitrescu V, David V, Pavel A (2001) Revista de Chimie 52:317–320

    CAS  Google Scholar 

  44. Richter P, Toral MI, Quiroz G, Jaque P (1997) Lab Rob Autom 9:255–262

    Article  CAS  Google Scholar 

  45. Senturk Z, Ozakan SA, Ozkan Y (1998) J Pharm Biomed Anal 16:801–807

    Article  CAS  PubMed  Google Scholar 

  46. Shapovalov VA (2002) Anal Chem 57:157–158

    Article  CAS  Google Scholar 

  47. Diezcaballero RJB, Delatorre LL, Valentin JFA, Garcia AA (1989) Talanta 36:501–504

    Article  Google Scholar 

  48. Britton HTS (1952) Hydrogen ions, 4th edn. Chapman and Hall

  49. Ellaithy MM, Zuman P (1992) J Pharm Sci 81:191–196

    CAS  PubMed  Google Scholar 

  50. Laviron E (1980) J Electroanal Chem 112:1–9

    CAS  Google Scholar 

  51. Wang J (1989) In: Bard AJ (ed) Electroanalytical chemistry, vol 16. Dekker, New York, p 7

  52. Delahay P (1980) New instrumental methods in electrochemistry. Interscience, New York, p 115, chap 6

  53. Webber A, Shah M, Osteryoung J (1984) Anal Chim Acta 157:1–16

    CAS  Google Scholar 

  54. Lovric M, Komorsky-Lovric S, Murray RW (1988) Electrochem Acta 33:739–744

    Article  CAS  Google Scholar 

  55. Miller JC, Miller JN (1993) Statistics for analytical chemistry, 3rd edn, Ellis Horwood Series. Prentice Hall, New York, p 119

  56. The United States Pharmacopoeia (2000) The National Formulary, USP 24, NF 19, USP Convention Inc, 12601, Rockville, MD, p 2151

Download references

Acknowledgement

The authors express their gratitude to the Alexander von Humboldt Foundation (Bonn, Germany) for donation of the Electrochemical Trace Analyzer Model 263A—PAR, the Eppendorf centrifuge 5417C and the PC-Computer used in the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Ghoneim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghoneim, M.M., Tawfik, A. & Khashaba, P.Y. Cathodic adsorptive stripping square-wave voltammetric determination of nifedipine drug in bulk, pharmaceutical formulation and human serum. Anal Bioanal Chem 375, 369–375 (2003). https://doi.org/10.1007/s00216-002-1703-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-002-1703-2

Keywords

Navigation