Skip to main content
Log in

Structures, stabilities and electronic properties of nitrogen dioxide adsorbed and embedded boron nitride clusters with different diameters

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The boron nitrides as the excellent sensors are used to detect certain harmful gases. The diameter of the boron nitrides is an important structural parameter to adjust the adsorption capacity. The structures, stabilities and electronic attributes of the NO2BmNm and NO2@BmNm (m = 48, 72 and 96) clusters have been investigated via first-principles. The bond angle ∠O–N–O = 134° of free NO2 molecules becomes slightly narrow (129.171°, 128.911° and 128.593°; 124.050°, 123.578° and 124.237°) of the NO2BmNm and NO2@BmNm clusters. The NO2 molecules prefer to embed in larger diameter BmNm (m = 72 and 96) clusters by the calculated binding energies per atom and HOMO–LUMO gaps. The charge amounts of the O2 fragments of the NO2BmNm clusters are almost the same while those of O2 fragments of the NO2@BmNm clusters obviously reduce. The internal charges of the O atoms of the NO2BmNm and NO2@BmNm (m = 48, 72 and 96) clusters transfer from the s to d orbitals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Farmanzadeh D, Rezainejad H (2016) Appl Surf Sci 364:862

    Article  CAS  Google Scholar 

  2. Fan G, Zhu S, Li X, Ni K, Xu H (2017) Comput Theor Chem 1115:208

    Article  CAS  Google Scholar 

  3. He W, Li Z, Yang J, Hou JG (2008) J Chem Phys 128:164701

    Article  PubMed  Google Scholar 

  4. Peyghan AA, Soltani A, Pahlevani AA, Kanani Y, Khajeh S (2013) Appl Surf Sci 270:25

    Article  CAS  Google Scholar 

  5. Xie Y, Huo Y-P, Zhang J-M (2012) Appl Surf Sci 258:6391

    Article  CAS  Google Scholar 

  6. Esrafili MD (2013) Struct Chem 24:1207

    Article  CAS  Google Scholar 

  7. Deng Z-Y, Zhang J-M (2016) Can J Phys 94:1071

    Article  CAS  Google Scholar 

  8. Deng Z-Y, Zhang J-M, Xu K-W (2016) Phys E 76:47

    Article  CAS  Google Scholar 

  9. Xiao M, Li X, Du B, Han T, Li Z, Li J, Xing Y (2019) Appl Surf Sci 491:698

    Article  CAS  Google Scholar 

  10. Soltani A, Baei MT, Lemeski ET, Kaveh S, Balakheyli H (2015) J Phys Chem Solids 86:57

    Article  CAS  Google Scholar 

  11. Soltani A, Ahmadian N, Kanani Y, Dehnokhalaji A, Mighani H (2012) Appl Surf Sci 258:9536

    Article  CAS  Google Scholar 

  12. Anota EC, Cocoletzi GH (2014) Phys E 56:134

    Article  Google Scholar 

  13. Anota EC, Cocoletzi GH, Sánchez Ramírez JF, Hernández AB (2014) Struct Chem 25:895

    Article  CAS  Google Scholar 

  14. He W, Li Z, Yang J, Hou JG (2008) J Chem Phys 129:024710

    Article  PubMed  Google Scholar 

  15. Karmodak N, Jemmis ED (2016) Chem Asian J 11:3350

    Article  CAS  PubMed  Google Scholar 

  16. Beheshtian J, Kamfiroozi M, Bagheri Z, Peyghan AA (2012) Chin J Chem Phys 25:60

    Article  CAS  Google Scholar 

  17. Bawa FH (2010) J Chem Soc Pak 32:319

    CAS  Google Scholar 

  18. Delley B (1990) J Chem Phys 92:508

    Article  CAS  Google Scholar 

  19. Delley B (2000) J Chem Phys 113:7756

    Article  CAS  Google Scholar 

  20. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  PubMed  Google Scholar 

  21. Mananghaya MR (2018) Int J Hydrog Energ 43:10368

    Article  CAS  Google Scholar 

  22. Tereshchuk P, Silva JLFD (2012) Phys Rev B 85:195461

    Article  Google Scholar 

  23. Zhao Z, Li Z, Wang Q, Wang D, Wu C, Zhou Z (2016) Comput Theor Chem 1095:9

    Article  CAS  Google Scholar 

  24. Li Z, Zhou Z, Wang H, Li S, Zhao Z (2016) J Cryst Growth 449:22

    Article  CAS  Google Scholar 

  25. Zhao Z, Zhang T, Wu J, Li Z (2022) Eur Phys J Plus 137:1027

    Article  CAS  Google Scholar 

  26. Li Z, Zhao Z (2018) Phase Transit 91:426

    Article  CAS  Google Scholar 

  27. Li Z, Zhao Z, Wang Q, Shi T (2019) Phase Transit 92:360

    Article  CAS  Google Scholar 

  28. Li Z, Zhao Z, Wang Q, Shi T (2019) Phase Transit 92:537

    Article  CAS  Google Scholar 

  29. Li Z, Zhao Z (2017) J Mater Sci 52:3301

    Article  CAS  Google Scholar 

  30. Kootenaei AS, Ansari G (2016) Phys Lett A 380:2664

    Article  Google Scholar 

  31. Wang H (2010) Chin J Chem 28:1897

    Article  CAS  Google Scholar 

  32. Zhao Z, Li Z, Shen X (2021) Mater Chem Phys 260:124098

    Article  CAS  Google Scholar 

  33. Matxain JM, Eriksson LA, Formoso E, Piris M, Ugalde JM (2007) J Phys Chem C 111:3560

    Article  CAS  Google Scholar 

  34. Valentin CD, Wang F, Pacchioni G (2013) Top Catal 56:1404

    Article  Google Scholar 

  35. Zhao YR, Xu YQ, Chen P, Yuan YQ, Qian Y, Li Q (2021) Results Phys 26:104341

    Article  Google Scholar 

  36. Zhao YR, Bai TT, Jia LN, Xin W, Hu YH, Zheng XS (2019) J Phys Chem C 123:28561

    Article  CAS  Google Scholar 

  37. Zhang XY, Zhao YR, Li HX, Cheng KG, Liu ZR, Liu ZP, He H (2023) Chin Phys B 32:066102

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from the National Natural Science Foundation, People’s Republic of China (Grant No.51634004) and top academic talent training program of Anshan Normal University (23kyxm0001).

Author information

Authors and Affiliations

Authors

Contributions

Zhi Li: Data curation, Formal analysis, Investigation, Methodology, Writing - original draft, Writing - review & editing. Jia-cong Li, Jia-hui Yin, Shu-qi Yang: Investigation, Writing - review & editing. Zhen Zhao: Writing - review & editing.

Corresponding author

Correspondence to Zhi Li.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Li, Jc., Yin, Jh. et al. Structures, stabilities and electronic properties of nitrogen dioxide adsorbed and embedded boron nitride clusters with different diameters. Theor Chem Acc 142, 113 (2023). https://doi.org/10.1007/s00214-023-03058-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-023-03058-w

Keywords

Navigation