Skip to main content
Log in

Boron carbide nanoclusters as H2 and N2 gases nanosensors: theoretical investigation

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Interactions between boron carbide nanoclusters (B16C16 and B24C24) and H2 and N2 molecules have been investigated using the structural and electronic properties of the adsorbate/cluster complexes derived from density functional theory. The adsorption energies of the most stable configurations have been calculated to be about −0.13, −0.66 eV for H2 and N2 adsorbed on the B16C16 surface and −1.05, −3.80 eV for H2 and N2 adsorbed on the B24C24 surface, respectively. Moreover, the interaction between H2 and the B16C16 has induced dramatic changes to the cluster electronic properties, so that the HOMO/LUMO gap of the cluster decreases to its original value. It has been shown that this phenomenon has led to an increment in the electrical conductivity of the cluster at a definite temperature. Thus, this work suggests that the B16C16 and B24C24 nano-cages function selectively as a gas sensor device for H2 and N2 molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H W Kroto, J R Heath, S C O’Brien and R F Curl Nature. 318 162 (1985)

    Google Scholar 

  2. M Contreras, D Avila, J Alvarez and R Rozas Struct. Chem. 21 573 (2010)

    Google Scholar 

  3. S Tetasang, S Keawwangchai, B Wanno and V Ruangpornvisuti Struct. Chem. 23 7 (2012)

    Google Scholar 

  4. A Ahmadi, J Beheshtian and N L Hadipour Phys. E. 43 1717 (2011)

    Article  Google Scholar 

  5. J Beheshtian, M Kamfiroozi, Z Bagheri and A Ahmadi Phys. E. 44 546 (2011)

    Article  Google Scholar 

  6. R T Paine and C K NaruLa Chem. Rev. 90 73 (1990)

    Article  Google Scholar 

  7. T Oku, M Kuno, H Kitahara and I Nartia Int. J. Inorg. Mater. 3 597 (2001)

    Article  Google Scholar 

  8. V Domnich, S Reynaud, R A Haber and M Chhowalla J. Am. Ceram. Soc. 94 3605 (2011)

    Article  Google Scholar 

  9. A Ektarawong, S I Simak, L Hultman, J Birch and B Alling, Phys. Rev. B 90 024204 (2014)

    Article  ADS  Google Scholar 

  10. V L Solozhenko, O O Kurakevych, D Andrault, Y Le Godec and M Mezouar Phys. Rev. Lett. 102 015506 (2009)

    Article  ADS  Google Scholar 

  11. F Baletto and R Ferrando Rev. Mod. Phys. 77 371 (2005)

    Article  ADS  Google Scholar 

  12. S Zhuiykov, W Wlodarski and Y Li Sens. Actuators B. 77 484 (2001)

    Article  Google Scholar 

  13. H Chang, J Lee, S Lee and Y Lee Appl. Phys. Lett. 79 3863 (2001)

    Google Scholar 

  14. R D Cortight, R R Davada and J A Dumesic Nature. 418 964 (2002)

    Article  ADS  Google Scholar 

  15. J Alper Science. 299 1686 (2003)

    Article  Google Scholar 

  16. L Schlapbach and A Züttel Nature. 15 353 (2001)

    Article  ADS  Google Scholar 

  17. A W C Van den Berg and C O Areán Chem. Commun. 668 (2008)

  18. N L Rosi, J Eckert, M Eddaoudi, D T Vodak, J Kim, M O’Keeffe, O M Yaghi Science. 300 1127 (2003)

    Google Scholar 

  19. V V Struzhkin, B Militzer, W L Mao, H-K Mao, R J Hemley Chem. Rev. 107 4133 (2007)

    Article  Google Scholar 

  20. M H F Sluiter, H Adachi, R V Belosludov, V R Belosludov and Y Kawazoe Mater. Trans. 45 1452 (2004)

    Article  Google Scholar 

  21. R StrÖbel, J Garche, P T Moseley, L JÖrissen and G Wolf J. Power Sources. 159 781 (2006)

    Article  ADS  Google Scholar 

  22. P O Krasnov, F Ding, A K Singh and B I Yakobson J. Phys. Chem. C. 111 17977 (2007)

    Article  Google Scholar 

  23. Q Sun, P Jena, Q Wang and M Marquez J. Am. Chem. Soc. 128 9741 (2006)

    Article  Google Scholar 

  24. N S Venkataramanan, R Sahara, H Mizuseki and Y Kawazoe J. Phys. Chem. C 112 19676 (2008)

    Article  Google Scholar 

  25. H Woolf, I Brown and M Bowden Curr. Appl. Phys. 8 459 (2008)

    Article  ADS  Google Scholar 

  26. J Beheshtian, M Kamfiroozi, Z Bagheri and A Ahmadi Comput. Mater. Sci. 54 115 (2012)

    Article  Google Scholar 

  27. J Beheshtian, A Ahmadi Peyghan and Z Bagheri J. Mol. Model. 19 255 (2012)

    Article  Google Scholar 

  28. A Datta Phys. Chem. Chem. Phys. 11 11054 (2009)

    Article  Google Scholar 

  29. TC Dinadayalane and J Leszczynski Struct. Chem. 21 1155 (2010)

    Article  Google Scholar 

  30. TC Dinadayalane, A Kaczmarek, J Lukaszewicz and J Leszczynski J. Phys. Chem. C. 111 7376 (2007)

    Article  Google Scholar 

  31. A Kaczmarek, T C Dinadayalane, J Lukaszewicz and J Leszczynski Int. J. Quantum. Chem. 107 2211 (2007)

    Article  ADS  Google Scholar 

  32. T C Dinadayalane and J Leszczynski Chem. Phys. Lett. 434 8 (2007)

    Article  Google Scholar 

  33. T C Dinadayalene, J S Murray, M C Concha, P Politzer and J Leszczynski J. Chem. Theory. Comput. 6 1351 (2010)

    Article  Google Scholar 

  34. J Beheshtian, M Kamfiroozi, Z Bagheri and A Ahmadi Comput. Mater. Sci. 54 115 (2012)

    Google Scholar 

  35. A K Jissy and A Datta J. Phys. Chem. B 114 15311 (2010)

    Article  Google Scholar 

  36. A K Jissy and A Datta Chem. Phys. Chem. 13 4163 (2012)

    Google Scholar 

  37. A Reed, L Curtiss and F Weinhold Chem. Rev. 88 899 (1988)

    Article  Google Scholar 

  38. N O’Boyle, A Tenderholt and K Langner J. Comput. Chem. 29 839 (2008)

    Article  Google Scholar 

  39. M Schmidt, et al. J.Comput.Chem. 14 1347 (1993)

    Article  Google Scholar 

  40. Z Peralta-Inga, P Lane, J S Murray, S Boyd, M E Grice, C J O’Connor and P Politzer Nano Lett. 3 21 (2002)

  41. P Politzer, P Lane, J S Murray and M C Concha J. Mol. Model. 1 11 (2005)

    Google Scholar 

  42. P Politzer, M E Grice and J S Murray J. Mol. Struct. (Theochem). 69 549 (2001)

  43. A Ahmadi, M Noei, and M B Tabar J. Mol. Model. 19 3007 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nouraliei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fallahpour, F., Gorgani, S.S. & Nouraliei, M. Boron carbide nanoclusters as H2 and N2 gases nanosensors: theoretical investigation. Indian J Phys 90, 931–936 (2016). https://doi.org/10.1007/s12648-016-0834-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-016-0834-9

Keywords

PACS No.

Navigation