Skip to main content
Log in

Structure and electronic properties of Aun cluster (n = 2,4,6,8,10,12,14) in zirconium-based metal–organic framework (MOF-801): density functional theory studies

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Incorporation of noble metal into metal–organic frameworks (MOFs) provides an opportunity to fine tune the structure and electronic properties of MOFs materials for many applications. Periodic density functional theory has been used to understand the nature of gold nanoparticle Aun cluster (n = 2, 4, 6, 8, 10, 12 and 14) inside zirconium-based MOFs (MOF-801). The Aun clusters were located inside the octahedral and tetrahedral pore of MOF-801 inducing confinement effect toward the structure of Aun cluster. Various parameters were calculated including the adsorption energy, deformation energy, density of states and intermolecular interaction between Aun cluster and MOF-801 surfaces. The studies indicate that the adsorption of Aun cluster is overall exothermic, and the Aun cluster inside the tetrahedral cage provides a higher stabilization energy. However, the presence of Aun cluster also induces deformation energy toward the MOF-801 structure. The binding sites of Aun cluster on the surface of MOF-801 has been assessed using the independent gradient model to unveil possible intermolecular forces between the host and guest system. The electronic bandgap has been assessed showing the possibility to modulate the bandgap energy by increasing the size of Aun cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Safaei M, Foroughi MM, Ebrahimpoor N, Jahani S, Omidi A, Khatami M (2019) A review on metal-organic frameworks: synthesis and applications, TrAC. Trends Anal Chem 118:401–425. https://doi.org/10.1016/j.trac.2019.06.007

    Article  CAS  Google Scholar 

  2. Stock N, Biswas S (2012) Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev 112:933–969. https://doi.org/10.1021/CR200304E/ASSET/IMAGES/MEDIUM/CR-2011-00304E_0009.GIF

    Article  CAS  PubMed  Google Scholar 

  3. Yusuf VF, Malek NI, Kailasa SK (2022) Review on metal-organic framework classification, synthetic approaches, and influencing factors: applications in energy, drug delivery, and wastewater treatmentS, ACS. Omega 7:44507–44531. https://doi.org/10.1021/ACSOMEGA.2C05310/ASSET/IMAGES/LARGE/AO2C05310_0012.JPEG

    Article  CAS  Google Scholar 

  4. Mandal S, Natarajan S, Mani P, Pankajakshan A (2021) Post-synthetic modification of metal-organic frameworks toward applications. Adv Funct Mater 31:2006291. https://doi.org/10.1002/ADFM.202006291

    Article  CAS  Google Scholar 

  5. Evans JD, Sumby CJ, Doonan CJ (2014) Post-synthetic metalation of metal–organic frameworks. Chem Soc Rev 43:5933–5951. https://doi.org/10.1039/C4CS00076E

    Article  CAS  PubMed  Google Scholar 

  6. Li JR, Sculley J, Zhou HC (2012) Metal-organic frameworks for separations. Chem Rev 112:869–932. https://doi.org/10.1021/cr200190s

    Article  CAS  PubMed  Google Scholar 

  7. Kulak H, Polat HM, Kavak S, Keskin S, Uzun A (2019) Improving CO2 separation performance of MIL-53(Al) by incorporating 1-n-Butyl-3-Methylimidazolium Methyl Sulfate. Energy Technol 7:1900157. https://doi.org/10.1002/ENTE.201900157

    Article  Google Scholar 

  8. Dou L, Wu S, Chen DL, He S, Wang FF, Zhu W (2018) Structures and electronic properties of Au clusters encapsulated ZIF-8 and ZIF-90. J Phys Chem C 122:8901–8909. https://doi.org/10.1021/ACS.JPCC.7B12480/ASSET/IMAGES/LARGE/JP-2017-12480Z_0009.JPEG

    Article  CAS  Google Scholar 

  9. Chen DL, Wu S, Yang P, He S, Dou L, Wang FF (2017) Ab initio molecular dynamic simulations on Pd clusters confined in UiO-66-NH2. J Phys Chem C 121:8857–8863. https://doi.org/10.1021/ACS.JPCC.7B00957/ASSET/IMAGES/LARGE/JP-2017-009575_0007.JPEG

    Article  CAS  Google Scholar 

  10. Vilhelmsen LB, Sholl DS (2012) Thermodynamics of pore filling metal clusters in metal organic frameworks: Pd in UiO-66. J Phys Chem Lett 3:3702–3706. https://doi.org/10.1021/JZ301806B/SUPPL_FILE/JZ301806B_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  11. Wang FF, Liang F, Zhang Y, Chen X, Chen DL, Zhu W (2020) Stabilities and electronic structures of transition metal (Cu, Ag, Au, Ni, Pd, Pt) cluster-confined UiO-66. J Phys Chem C 124:28123–28131. https://doi.org/10.1021/ACS.JPCC.0C08997/ASSET/IMAGES/LARGE/JP0C08997_0010.JPEG

    Article  CAS  Google Scholar 

  12. Pambudi FI, Pratiwi NS, Chusnawati U (2023) First-principle study on the lattice-directed missing linker defect in zirconium based metal-organic framework (MOF-801): electronic properties and interaction with hydrogen. Mater Today Commun 35:105967–105998. https://doi.org/10.1016/j.mtcomm.2023.105967

    Article  CAS  Google Scholar 

  13. Dhakshinamoorthy A, Asiri AM, Garcia H (2017) Metal organic frameworks as versatile hosts of Au nanoparticles in heterogeneous catalysis. ACS Catal 7:2896–2919. https://doi.org/10.1021/ACSCATAL.6B03386/ASSET/IMAGES/MEDIUM/CS-2016-033866_0031.GIF

    Article  CAS  Google Scholar 

  14. Sun D, Liu W, Fu Y, Fang Z, Sun F, Fu X, Zhang Y, Li Z (2014) Noble metals can have different effects on photocatalysis over metal-organic frameworks (MOFs): a case study on M/NH 2 -MIL-125(Ti) (M=Pt and Au). Chem - A Eur J 20:4780–4788. https://doi.org/10.1002/chem.201304067

    Article  CAS  Google Scholar 

  15. Wang ZJ, Li Q, Tan LL, Liu CG, Shang L (2022) (2022) Metal-organic frameworks-mediated assembly of gold nanoclusters for sensing applications. J. Anal. Test. 62(6):163–177. https://doi.org/10.1007/S41664-022-00224-0

    Article  Google Scholar 

  16. Sun Z, Wu S, Ma J, Shi H, Wang L, Sheng A, Yin T, Sun L, Li G (2019) Colorimetric sensor array for human semen identification designed by coupling zirconium metal-organic frameworks with DNA-modified gold nanoparticles. ACS Appl Mater Interfaces 11:36316–36323. https://doi.org/10.1021/acsami.9b10729

    Article  CAS  PubMed  Google Scholar 

  17. Cao F, Ju E, Liu C, Li W, Zhang Y, Dong K, Liu Z, Ren J, Qu X (2017) Encapsulation of aggregated gold nanoclusters in a metal–organic framework for real-time monitoring of drug release. Nanoscale 9:4128–4134. https://doi.org/10.1039/C7NR00073A

    Article  CAS  PubMed  Google Scholar 

  18. Ding X, Li Z, Yang J, Hou JG, Zhu Q (2004) Adsorption energies of molecular oxygen on Au clusters. J Chem Phys 120:9594–9600. https://doi.org/10.1063/1.1665323

    Article  CAS  PubMed  Google Scholar 

  19. Pyykkö P (2004) Theoretical chemistry of gold. Angew Chemie Int Ed 43:4412–4456. https://doi.org/10.1002/anie.200300624

    Article  CAS  Google Scholar 

  20. Butova VV, Kirichkov MV, Budnyk AP, Guda AA, Soldatov MA, Lamberti C, Soldatov AV (2018) A room-temperature growth of gold nanoparticles on MOF-199 and its transformation into the [Cu2(OH)(BTC)(H2O)]n phase. Polyhedron 154:357–363. https://doi.org/10.1016/J.POLY.2018.08.002

    Article  CAS  Google Scholar 

  21. Zhang Y, Hu Y, Li G, Zhang R (2019) A composite prepared from gold nanoparticles and a metal organic framework (type MOF-74) for determination of 4-nitrothiophenol by surface-enhanced Raman spectroscopy. Microchim Acta 186:1–10. https://doi.org/10.1007/S00604-019-3618-Z/FIGURES/6

    Article  Google Scholar 

  22. Gordillo MA, Benavides PA, Ma K, Saha S (2022) Transforming an insulating metal-organic framework (MOF) into semiconducting MOF/gold nanoparticle (AuNP) and MOF/Polymer/AuNP composites to gain electrical conductivity. ACS Appl Nano Mater 5:13912–13920. https://doi.org/10.1021/ACSANM.2C03643/ASSET/IMAGES/LARGE/AN2C03643_0004.JPEG

    Article  CAS  Google Scholar 

  23. Cure J, Mattson E, Cocq K, Assi H, Jensen S, Tan K, Catalano M, Yuan S, Wang H, Feng L, Zhang P, Kwon S, Veyan JF, Cabrera Y, Zhang G, Li J, Kim M, Zhou HC, Chabal YJ, Thonhauser T (2019) High stability of ultra-small and isolated gold nanoparticles in metal–organic framework materials. J Mater Chem A 7:17536–17546. https://doi.org/10.1039/C8TA12334A

    Article  CAS  Google Scholar 

  24. Vilhelmsen LB, Walton KS, Sholl DS (2012) Structure and mobility of metal clusters in MOFs: Au, Pd, and AuPd clusters in MOF-74. J Am Chem Soc 134:12807–12816. https://doi.org/10.1021/JA305004A/SUPPL_FILE/JA305004A_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  25. Wang C, Xiong C, Zhang X, He Y, Xu J, Zhao Y, Wang S, Zheng J (2022) External optimization of Zr-MOF with mercaptosuccinic acid for efficient recovery of gold from solution: adsorption performance and DFT calculation. Sep Purif Technol 296:121329. https://doi.org/10.1016/J.SEPPUR.2022.121329

    Article  CAS  Google Scholar 

  26. Lin S, Kumar Reddy DH, Bediako JK, Song MH, Wei W, Kim JA, Yun YS (2017) Effective adsorption of Pd(II), Pt(IV) and Au(III) by Zr(IV)-based metal–organic frameworks from strongly acidic solutions. J. Mater. Chem. A. 5:13557–13564. https://doi.org/10.1039/C7TA02518A

    Article  CAS  Google Scholar 

  27. Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP (2008) A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 130:13850–13851. https://doi.org/10.1021/ja8057953

    Article  CAS  PubMed  Google Scholar 

  28. Furukawa H, Gándara FG, Zhang Y-B, Jiang J, Queen WL, Hudson MR, Yaghi OM (2014) Water adsorption in porous metal−organic frameworks and related materials. J Am Chem Soc 136:4381. https://doi.org/10.1021/ja500330a

    Article  CAS  Google Scholar 

  29. Kühne TD, Iannuzzi M, Del Ben M, Rybkin VV, Seewald P, Stein F, Laino T, Khaliullin RZ, Schütt O, Schiffmann F, Golze D, Wilhelm J, Chulkov S, Bani-Hashemian MH, Weber V, Borštnik U, Taillefumier M, Jakobovits AS, Lazzaro A, Pabst H, Müller T, Schade R, Guidon M, Andermatt S, Holmberg N, Schenter GK, Hehn A, Bussy A, Belleflamme F, Tabacchi G, Glöß A, Lass M, Bethune I, Mundy CJ, Plessl C, Watkins M, VandeVondele J, Krack M, Hutter J (2020) CP2K: an electronic structure and molecular dynamics software package - quickstep: efficient and accurate electronic structure calculations. J Chem Phys 152:194103–194198. https://doi.org/10.1063/5.0007045

    Article  CAS  PubMed  Google Scholar 

  30. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  31. Pambudi FI, N. (2021) Prasetyo, insight into the structure of the heulandite-type zeolite containing aromatic compounds using periodic density functional theory. Mater. Today Commun. 26:102028–102098. https://doi.org/10.1016/j.mtcomm.2021.102028

    Article  CAS  Google Scholar 

  32. Golze D, Iannuzzi M, Hutter J (2017) Local fitting of the Kohn-Sham density in a gaussian and plane waves scheme for large-scale density functional theory simulations. J Chem Theory Comput 13:2202–2214. https://doi.org/10.1021/acs.jctc.7b00148

    Article  CAS  PubMed  Google Scholar 

  33. Wang X-D, Huang Y-H, Liao J-F, Jiang Y, Zhou L, Zhang X-Y, Chen H-Y, Kuang D-B (2019) In situ construction of a Cs 2 SnI 6 perovskite nanocrystal/SnS 2 nanosheet heterojunction with boosted interfacial charge transfer. J Am Chem Soc 141:13434–13441. https://doi.org/10.1021/jacs.9b04482

    Article  CAS  PubMed  Google Scholar 

  34. Bao Q, Zhang W, Mei D (2021) Theoretical characterization of zeolite encapsulated platinum clusters in the presence of water molecules. Phys Chem Chem Phys 23:23360–23371. https://doi.org/10.1039/D1CP03766H

    Article  CAS  PubMed  Google Scholar 

  35. Heyd J, Scuseria GE (2004) Efficient hybrid density functional calculations in solids: assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional. J Chem Phys 121:1187–1192. https://doi.org/10.1063/1.1760074

    Article  CAS  PubMed  Google Scholar 

  36. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  37. Lefebvre C, Khartabil H, Boisson JC, Contreras-García J, Piquemal JP, Hénon E (2018) The independent gradient model: a new approach for probing strong and weak interactions in molecules from wave function calculations. ChemPhysChem 19:724–735. https://doi.org/10.1002/cphc.201701325

    Article  CAS  PubMed  Google Scholar 

  38. Häkkinen H (2008) Atomic and electronic structure of gold clusters: understanding flakes, cages and superatoms from simple concepts. Chem Soc Rev 37:1847. https://doi.org/10.1039/b717686b

    Article  CAS  PubMed  Google Scholar 

  39. Bakhtian M, Khosroshahi N, Safarifard V (2022) Efficient removal of inorganic and organic pollutants over a NiCo2O4@MOF-801@MIL88A photocatalyst: the significance of ternary heterojunction engineering. ACS Omega. https://doi.org/10.1021/acsomega.2c05000

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully thanks to the support from the Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada .

Funding

Funding was provided by Department of Chemistry, Universitas Gadjah Mada

Author information

Authors and Affiliations

Authors

Contributions

FIP contributed to conceptualization, methodology, formal analysis, investigation, writing—original draft, and supervision. MRN contributed to formal analysis, investigation, writing—review & editing.

Corresponding author

Correspondence to Fajar Inggit Pambudi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationship that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18646 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pambudi, F.I., Najib, M.R. Structure and electronic properties of Aun cluster (n = 2,4,6,8,10,12,14) in zirconium-based metal–organic framework (MOF-801): density functional theory studies. Theor Chem Acc 142, 82 (2023). https://doi.org/10.1007/s00214-023-03030-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-023-03030-8

Keywords

Navigation