Skip to main content
Log in

Digging on the mechanism of some Diels–Alder reactions: the role of the reaction electronic flux

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Within the framework of the reaction force analysis, numerical data obtained from DFT calculations were used to characterize the mechanism of three Diels–Alder reactions involving three substituted furandione as dienophile, and a chiral anthracene, as diene. Then, the Marcus potential energy function and the activation strain model were used to rationalize the energetics of the reactions and to obtain physical insights on the nature of activation energies. It has been found that the activation processes are dominated by structural arrangements of reactants, basically due to the approach of the diene to the dienophile to start the reaction. Besides, the electronic activity taking place along the reaction coordinate have been analyzed through the reaction electronic flux. It has been found that the electronic activity that emerge more intensively within the transition-state region, is mainly due to electronic transfer effects, due to the breaking and forming π bonds. Although polarization effects are also present but to a lesser extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Trivedi B (2013) Maleic anhydride

  2. Nagaraja A, Jalageri MD, Puttaiahgowda YM, Raghava Reddy K, Raghu AV (2019) A review on various maleic anhydride antimicrobial polymers. J Microbiol Methods 163:105650

    Article  CAS  PubMed  Google Scholar 

  3. Shen Y, Qi R, Liu Q, Wang Y, Mao Y, Yu J (2008) Grafting of maleic anhydride onto polyethylene through a green chemistry approach. J Appl Polym Sci 110:2261–2266

    Article  CAS  Google Scholar 

  4. Mahmoud E, Watson DA, Lobo RF (2014) Renewable production of phthalic anhydride from biomass-derived furan and maleic anhydride. Green Chem 16:167–175

    Article  CAS  Google Scholar 

  5. Li X, Ho B, Zhang Y (2016) Selective aerobic oxidation of furfural to maleic anhydride with heterogeneous Mo-V-O catalysts. Green Chem 18:2976–2980

    Article  CAS  Google Scholar 

  6. Sakata K, Fujimoto H (2016) origin of the endo selectivity in the diels-alder reaction between cyclopentadiene and maleic anhydride. European J Org Chem 2016:4275–4278

    Article  CAS  Google Scholar 

  7. Goh YW, White JM (2009) Structure correlation study of some diels-alder cycloadducts of anthracene. Aust J Chem 62:419–424

    Article  CAS  Google Scholar 

  8. Hernvann F, Rasore G, Declerck V, Aitken DJ (2014) Stereoselective intermolecular [2 + 2]-photocycloaddition reactions of maleic anhydride: stereocontrolled and regiocontrolled access to 1,2,3-trifunctionalized cyclobutanes. Org Biomol Chem 12:8212–8222

    Article  CAS  PubMed  Google Scholar 

  9. Domingo LR, Sáez JA (2009) Understanding the mechanism of polar Diels Alder reactions. Org Biomol Chem 7:3576–3583

    Article  CAS  PubMed  Google Scholar 

  10. Domingo LR (2014) A new C-C bond formation model based on the quantum chemical topology of electron density. RSC Adv 4:32415–32428

    Article  CAS  Google Scholar 

  11. Domingo LR, Ríos-Gutiérrez M, Pérez P (2016) Applications of the conceptual density functional theory indices to organic chemistry reactivity. Molecules 21:748

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yepes D, Murray JS, Pérez P, Domingo LR, Politzer P, Jaque P (2014) Complementarity of reaction force and electron localization function analyses of asynchronicity in bond formation in Diels-Alder reactions. Phys Chem Chem Phys 16:6726–6734

    Article  CAS  PubMed  Google Scholar 

  13. Corbett MS, Liu X, Sanyal A, Snyder JK (2003) Cycloadditions of chiral anthracenes: effect of the trifluoromethyl group. Tetrahedron Lett 44:931–935

    Article  CAS  Google Scholar 

  14. Echegaray E, Toro-Labbé A (2008) Reaction electronic flux: a new concept to get insights into reaction mechanisms study of model symmetric nucleophilic substitutions. J Phys Chem A 112:11801–11807

    Article  CAS  PubMed  Google Scholar 

  15. Cerón ML, Echegaray E, Gutiérrez-Oliva S, Herrera B, Toro-Labbé A (2011) The reaction electronic flux in chemical reactions. Sci China Chem 54:1982–1988

    Article  Google Scholar 

  16. Duarte F, Toro-Labbé A (2011) The mechanism of H2 activation by (amino)carbenes. J Phys Chem A 115:3050–3059

    Article  CAS  PubMed  Google Scholar 

  17. Hernández Mancera JP, Núñez-Zarur F, Gutiérrez-Oliva S, Toro-Labbé A, Vivas-Reyes R (2020) Diels-alder reaction mechanisms of substituted chiral anthracene: a theoretical study based on the reaction force and reaction electronic flux. J Comput Chem 41:2022–2032

    Article  PubMed  Google Scholar 

  18. Hernández-Mancera JP, Núñez-Zarur F, Vivas-Reyes R (2020) Diels-alder reactivity of a chiral anthracene template with symmetrical and unsymmetrical dienophiles: a DFT study. ChemistryOpen 9:748–761

    Article  PubMed  PubMed Central  Google Scholar 

  19. Toro-Labbé A (1999) Characterization of chemical reactions from the profiles of energy, chemical potential, and hardness. J Phys Chem A 103:4398–4403

    Article  Google Scholar 

  20. Politzer P, Toro-Labbé A, Gutiérrez-Oliva S, Herrera B, Jaque P, Concha MC, Murray JS (2005) The reaction force: three key points along an intrinsic reaction coordinate. J Chem Sci 117:467–472

    Article  CAS  Google Scholar 

  21. Gutiérrez-Oliva S, Herrera B, Toro-Labbé A, Chermette H (2005) On the mechanism of hydrogen transfer in the HSCH(O) ⇄ (S)CHOH and HSNO ⇄ SNOH reactions. J Phys Chem A 109:1748–1751

    Article  PubMed  Google Scholar 

  22. Politzer P, Murray JS, Yepes D, Jaque P (2014) Driving and retarding forces in a chemical reaction. J Mol Model 20:2351

    Article  PubMed  Google Scholar 

  23. Yepes D, Donoso-Tauda O, Pérez P, Murray JS, Politzer P, Jaque P (2013) The reaction force constant as an indicator of synchronicity/ nonsynchronicity in [4+2] cycloaddition processes. Phys Chem Chem Phys 15:7311–7320

    Article  CAS  PubMed  Google Scholar 

  24. Burda JV, Toro-Labbé A, Gutiérrez-Oliva S, Murray JS, Politzer P (2007) Reaction force decomposition of activation barriers to elucidate solvent effects. J Phys Chem A 111:2455–2457

    Article  CAS  PubMed  Google Scholar 

  25. Toro-Labbé A, Gutiérrez-Oliva S, Murray JS, Politzer P (2009) The reaction force and the transition region of a reaction. J Mol Model 15:707–7110

    Article  PubMed  Google Scholar 

  26. Gutiérrez-Oliva S, Herrera B, Toro-Labbé A (2018) An extension of the marcus equation: the marcus potential energy function. J Mol Model 24:1–6

    Article  Google Scholar 

  27. Gutiérrez‐Oliva S, Díaz S, Toro‐Labbé A (2021) Chemical Reactivity in Confined Systems: Theory, Modelling and Applications, 81–97

  28. Cárdenas-Jirón GI, Toro-Labbé A, Bock CW, Maruani J (1995) Characterization of rotational isomerization processes in monorotor molecules. Struct Dyn Non-Rigid Mol Syst 12:97–120

    Article  Google Scholar 

  29. Martínez J, Toro-Labbé A (2004) Energy and chemical force profiles from the Marcus equation. Chem Phys Lett 392:132–139

    Article  Google Scholar 

  30. Hammond GS (1955) A correlation of reaction rates. J Am Chem Soc 77:334–338

    Article  CAS  Google Scholar 

  31. Marcus RA (1964) Chemical and electrochemical electron-transfer theory. Annu Rev Phys Chem 15:155–196

    Article  CAS  Google Scholar 

  32. Marcus RA (1993) Electron transfer reactions in chemistry, theory and experiment. Rev Mod Phys 65:599

    Article  CAS  Google Scholar 

  33. Van Zeist WJ, Koers AH, Wolters LP, Bickelhaupt FM (2008) Reaction coordinates and the transition-vector approximation to the IRC. J Chem Theory Comput 4:920–928

    Article  PubMed  Google Scholar 

  34. Van Zeist WJ, Bickelhaupt FM (2010) The activation strain model of chemical reactivity. Org Biomol Chem 8:3118–3127

    Article  PubMed  Google Scholar 

  35. Wolters LP, Bickelhaupt FM (2015) The activation strain model and molecular orbital theory. Wiley Interdiscip Rev Comput Mol Sci 5:324–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kubelka J, Bickelhaupt FM (2017) Activation strain analysis of SN2 reactions at C, N, O, and F centers. J Phys Chem A 121:885–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Díaz S, Brela MZ, Gutiérrez-Oliva S, Toro-Labbé A, Michalak A (2017) ETS-NOCV decomposition of the reaction force: the HCN/CNH isomerization reaction assisted by water. J Comput Chem 38:2076–2087

    Article  PubMed  Google Scholar 

  38. Barrales-Martínez C, Cortés-Arriagada D, Gutiérrez-Oliva S (2018) Molecular hydrogen formation in the interstellar medium: the role of polycyclic aromatic hydrocarbons analysed by the reaction force and activation strain model. Mon Not R Astron Soc 481:3052–3062

    Article  Google Scholar 

  39. Durán R, Herrera B (2019) Theoretical study of the mechanism of catalytic enanteoselective N-H and O-H insertion reactions. J Phys Chem A 124:2–11

    Article  PubMed  Google Scholar 

  40. Herrera B, Toro-Labbé A (2007) The role of reaction force and chemical potential in characterizing the mechanism of double proton transfer in the adenine-uracil complex. J Phys Chem A 111:5921–5926

    Article  CAS  PubMed  Google Scholar 

  41. Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68:3801–3807

    Article  CAS  Google Scholar 

  42. Pearson RG (1985) Absolute electronegativity and absolute hardness of Lewis acids and bases. J Am Chem Soc 107:6801–6806

    Article  CAS  Google Scholar 

  43. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  44. Koopmans T (1934) Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica 1:104–113

    Article  Google Scholar 

  45. Janak JF (1978) Proof that dE/dn_i = e_i in density-functional theory. Phys Rev B 18:7165

    Article  CAS  Google Scholar 

  46. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1874

    Article  CAS  PubMed  Google Scholar 

  47. Gutiérrez-Oliva S, Forero-Girón AC, Villegas-Escobar N, Toro-Labbé A (2022) On the mechanisms of chemical reactions. Concept Density Funct Theory Towar New Chem React Theory 2:463–479

    Google Scholar 

  48. Brauer B, Kesharwani MK, Martin JML (2014) Some observations on counterpoise corrections for explicitly correlated calculations on noncovalent interactions. J Chem Theory Comput 10:3791–3799

    Article  CAS  PubMed  Google Scholar 

  49. Pearson RG (2005) Chemical hardness and density functional theory. J Chem Sci 117:369–377

    Article  CAS  Google Scholar 

  50. Parr RG, Szentpály LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  51. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Jr JAM, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016)

  52. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for ain group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements : two new functionals and systematic testing of four m06-class functionals and 12 other fun. Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  53. Krishnan RBJS, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

  54. Jensen F (2007) Introduction to computational chemistry, 2a edn. The Atrium, Southern Gate

    Google Scholar 

  55. Fukui K, Kato S, Fujimoto H (1975) Constituent analysis of the potential gradient along a reaction coordinate. Method and an application to CH 4 + T reaction. J Am Chem Soc 97:1–7

    Article  CAS  Google Scholar 

  56. Svatunek D, Houk KN (2019) AutoDIAS: A python tool for an automated distortion/interaction activation strain analysis. J Comput Chem 40:2509–2515

    Article  CAS  PubMed  Google Scholar 

  57. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All authors gratefully acknowledge the financial support from ANID (Chile) through Project FONDECYT N0. 1201617. JHM and RVR acknowledge financial support provided by Ministry of Science, Technology and Innovation (Colombia) for a Postdoctoral grant at the Universidad de Cartagena (Cartagena, Colombia). This paper is dedicated to our dear friend, Professor Pratim K. Chattaraj for his 65th anniversary. Happy Birthday Pratim!!

Funding

ANID (Chile) through Project FONDECYT No. 1201617.

Author information

Authors and Affiliations

Authors

Contributions

Jennifer Hernandez-Mancera made most calculations and prepared the figures and wrote the manuscript; Ricardo Vivas-Reyes suggested the reactions that are studied in this paper, he helped preparing the figures and discussing the results; Soledad Gutiérrez-Oliva was involved in the benchmark of the methodologies, she helped with the analysis of results and reviewed the manuscript and discussed the results; Bárbara Herrera helped with the calculations suggesting methodologies, she was involved in the analysis of results,  reviewed the manuscript; Alejandro Toro-Labbé proposed the use of theoretical and conceptual tools for analysis; was in charge of the structure and organization of the paper and performing exhaustive reviews of the manuscript.

Corresponding author

Correspondence to Alejandro Toro-Labbé.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 37 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Mancera, J.P., Vivas-Reyes, R., Gutiérrez-Oliva, S. et al. Digging on the mechanism of some Diels–Alder reactions: the role of the reaction electronic flux. Theor Chem Acc 142, 64 (2023). https://doi.org/10.1007/s00214-023-03019-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-023-03019-3

Keywords

Navigation