Skip to main content
Log in

A kinetic perspective of charge transfer reactions: the downfall of hard/soft acid/base interactions

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We show how to incorporate the possibility of kinetic control in the conceptual density functional theory formalism. This allow us to prove that the hard/soft acid/base principle will likely fail when the reactions are not thermodynamically-driven.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fukui K, Yonezawa T, Nagata C (1953) J Chem Phys 21:174

    Article  CAS  Google Scholar 

  2. Fukui K, Yonezawa T, Shingu H (1952) J Chem Phys 20:722

    Article  CAS  Google Scholar 

  3. Klopman G (1968) J Am Chem Soc 90:223

    Article  CAS  Google Scholar 

  4. Klopman G, Hudson RF (1967) Theor Chim Act 8:165

    Article  CAS  Google Scholar 

  5. Salem L (1969) Chem Br 5:449

    CAS  Google Scholar 

  6. Salem L (1968) J Am Chem Soc 90:553

    Article  CAS  Google Scholar 

  7. Salem L (1968) J Am Chem Soc 90:543

    Article  CAS  Google Scholar 

  8. Hohenberg P, Kohn W (1964) Phys Rev 136:B864

    Article  Google Scholar 

  9. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford UP, New York

    Google Scholar 

  10. Chermette H (1999) J Comput Chem 20:129

    Article  CAS  Google Scholar 

  11. Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793

    Article  CAS  PubMed  Google Scholar 

  12. Ayers PW, Parr RG (2010) J Am Chem Soc 2000:122

    Google Scholar 

  13. Ayers PW, Parr RG (2007) J Am Chem Soc 2001:123

    Google Scholar 

  14. Johnson PA, Bartolotti LJ, Ayers PW, Fievez T, Geerlings P (2012) In: Gatti C, Macchi P (eds) Modern charge density analysis. Springer, New York, p 715

  15. Miranda-Quintana RA (2018) In: Islam N, Kaya S (eds) Conceptual density functional theory and its applications in the chemical domain. Apple Academic Press, New Jersey, USA, p 15

  16. Chemical reactivity theory: a density functional view. In: Chattaraj PK (ed) CRC Press, Boca Raton, Florida (2009)

  17. Fuentealba P, Cárdenas C (2015) In: Springborg M (ed) Chemical modelling. The Royal Society of Chemistry, vol 11, p 151

  18. Conceptual density functional theory: towards a new chemical reactivity theory. Wiley (2022)

  19. Geerlings P, Chamorro E, Chattaraj PK, De Proft F, Gazquez JL, Liu S, Toro-Labbe A, Vela A, Ayers PW (2020) Theor Chem Acc 139:36

    Article  CAS  Google Scholar 

  20. Sanderson RT (1976) Chemical Bonds and Bond Energy. Academic, New York

    Google Scholar 

  21. Sanderson RT (1951) Science 114:670

    Article  CAS  PubMed  Google Scholar 

  22. Pearson RG (1993) Acc Chem Res 26:250

    Article  CAS  Google Scholar 

  23. Pearson RG, Palke WE (1992) J Phys Chem 96:3283

    Article  CAS  Google Scholar 

  24. Parr RG, Chattaraj PK (1854) J Am Chem Soc 1991:113

    Google Scholar 

  25. Miranda-Quintana RA, Franco-Pérez M, Gazquez JL, Ayers PW, Vela A (2018) J Chem Phys 149:124110

    Article  PubMed  Google Scholar 

  26. Morell C, Labet V, Grand A, Chermette H (2009) Phys Chem Chem Phys 11:3414

    Article  Google Scholar 

  27. Noorizadeh S (2007) J Phys Org Chem 20:514

    Article  CAS  Google Scholar 

  28. Chattaraj PK (2007) Indian J Phys Proc Indian Assoc Cultiv Sci 81:871

    CAS  Google Scholar 

  29. González MM, Cardenas C, Rodríguez JI, Liu S, Heidar Zadeh F, Miranda-Quintana RA, Ayers PW (2018) Acta Phys Chim Sin 34:662

    Google Scholar 

  30. Miranda-Quintana RA, Ayers PW (2018) J Chem Phys 148:196101

    Article  PubMed  Google Scholar 

  31. Miranda-Quintana RA (2017) J Chem Phys 146:046101

    Article  PubMed  Google Scholar 

  32. Miranda-Quintana RA, Chattaraj PK, Ayers PW (2017) J Chem Phys 147:124103

    Article  PubMed  Google Scholar 

  33. Parr RG (1994) Int J Quantum Chem 49:739

    Article  Google Scholar 

  34. Miranda-Quintana RA, Ayers PW, Heidar-Zadeh F (2021) ChemistrySelect 6:96

    Article  CAS  Google Scholar 

  35. Miranda-Quintana RA, Ayers PW (2019) Theor Chem Acc 138:44

    Article  Google Scholar 

  36. Miranda-Quintana RA, Heidar-Zadeh F, Ayers PW (2018) J Phys Chem Lett 9:4344

    Article  CAS  PubMed  Google Scholar 

  37. Miranda-Quintana RA, Ayers PW (2018) Theor Chem Acc 137:177

    Article  Google Scholar 

  38. Miranda-Quintana RA (2022) J Chem Phys 157:156101

    Article  CAS  PubMed  Google Scholar 

  39. Pearson RG, Songstad J (1827) J Am Chem Soc 1967:89

    Google Scholar 

  40. Pearson RG (1966) Science 151:172

    Article  CAS  PubMed  Google Scholar 

  41. Pearson RG (1963) J Am Chem Soc 85:3533

    Article  CAS  Google Scholar 

  42. Gazquez JL (1997) J Phys Chem A 101:4657

    Article  CAS  Google Scholar 

  43. Chattaraj PK, Lee H, Parr RG (1855) J Am Chem Soc 1991:113

    Google Scholar 

  44. Ayers PW (2005) J Chem Phys 122:141102

    Article  PubMed  Google Scholar 

  45. Miranda-Quintana RA, Kim TD, Cardenas C, Ayers PW (2017) Theor Chem Acc 136:135

    Article  Google Scholar 

  46. Miranda-Quintana RA, Heidar-Zadeh F, Fias S, Chapman AEA, Liu S, Morell C, Gomez T, Cardenas C, Ayers PW (2022) Front Chem 10:906674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Miranda-Quintana RA, Heidar-Zadeh F, Fias S, Chapman AEA, Liu S, Morell C, Gomez T, Cardenas C, Ayers PW (2022) Front Chem 10:929464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Miranda-Quintana RA, Ayers PW, Heidar-Zadeh F (2021) Theor Chem Acc 140:140

    Article  CAS  Google Scholar 

  49. Mayr H, Breugst M, Ofial AR (2011) Angew Chem-Int Ed 50:6470

    Article  CAS  Google Scholar 

  50. Gompper R (1964) Angew Chem Int Ed 3:560

    Article  Google Scholar 

  51. Gompper R, Wagner H-U (1976) Angew Chem Int Ed 15:321

    Article  Google Scholar 

  52. Hamid A, Roy RK (2020) J Phys Chem A 124:5775

    Article  CAS  PubMed  Google Scholar 

  53. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512

    Article  CAS  Google Scholar 

  54. Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68:3801

    Article  CAS  Google Scholar 

  55. Ayers PW, Parr RG, Pearson RG (2006) J Chem Phys 124:194107

    Article  PubMed  Google Scholar 

  56. Bagaria P, Saha S, Murru S, Kavala V, Patel BK, Roy RK (2009) Phys Chem Chem Phys 11:8306

    Article  CAS  PubMed  Google Scholar 

  57. Miranda-Quintana RA, Deswal N, Roy RK (2022) Theor Chem Acc 141:4

    Article  CAS  Google Scholar 

  58. Yang WT, Zhang YK, Ayers PW (2000) Phys Rev Lett 84:5172

    Article  CAS  PubMed  Google Scholar 

  59. Ayers PW (2008) J Math Chem 43:285

    Article  CAS  Google Scholar 

  60. Miranda-Quintana RA, Bochicchio RC (2014) Chem Phys Lett 593:35

    Article  CAS  Google Scholar 

  61. Bochicchio RC, Miranda-Quintana RA, Rial D (2013) J Chem Phys 139:191101

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the University of Florida for their support in the form of a startup grant.

Author information

Authors and Affiliations

Authors

Contributions

As the single author of this manuscript, I was in charge of all the work.

Corresponding author

Correspondence to Ramón Alain Miranda-Quintana.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miranda-Quintana, R.A. A kinetic perspective of charge transfer reactions: the downfall of hard/soft acid/base interactions. Theor Chem Acc 142, 52 (2023). https://doi.org/10.1007/s00214-023-02992-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-023-02992-z

Keywords

Navigation