Skip to main content

Advertisement

Log in

Theoretical investigation of some transition metal sulfides nanomaterials: CDFT approach

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A quest for a low-cost and efficient alternative energy conversion/storage system has attracted much interest in the past decades. Transition metal sulfides have been proven as potential electrode materials for supercapacitor and battery technology applications. This report investigates the structure and electronic properties of ternary transition metal sulfides CuX2S4 nanomaterials (X = Ti, V, Cr, Mn, Fe, Co, Ni) by invoking Conceptual Density Functional Theory (CDFT) method. The computed energy gap of CuX2S4 species is in the range of 1.117–3.365 eV. The highest occupied molecular orbital (HOMO)–lowest unoccupied molecular orbital (LUMO) energy gap of transition metal sulfide follows the order as CuCr2S4 < CuCo2S4 < CuV2S4 < CuMn2S4 < CuFe2S4 < CuTi2S4 < CuNi2S4. It specifies that the electronic stability of CuNi2S4 is superior to that of CuCr2S4. A close agreement between the computed bond lengths and the existing experimental data signifies the novelty of this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this manuscript.

References

  1. Xiao J, Wan L, Yang S, Xiao F, Wang S (2014) Nano Lett 14:831–838. https://doi.org/10.1021/nl404199v

    Article  CAS  PubMed  Google Scholar 

  2. Xiong X, Waller G, Ding D, Chen D, Rainwater B, Zhao B, Wang Z, Liu M (2015) Nano Energy 16:71–80. https://doi.org/10.1016/j.nanoen.2015.06.018

    Article  CAS  Google Scholar 

  3. Miller JR, Simon P (2008) Science 321:651–652. https://doi.org/10.1126/science.1158736

    Article  CAS  PubMed  Google Scholar 

  4. Simon P, Gogotsi Y (2008) Nat Mater 7:845–854. https://doi.org/10.1038/nmat2297

    Article  CAS  PubMed  Google Scholar 

  5. Wang G, Zhang L, Zhang J (2012) Chem Soc Rev 41:797–828. https://doi.org/10.1039/C1CS15060J

    Article  CAS  PubMed  Google Scholar 

  6. Rakhi RB, Chen W, Cha D, Alshareef HN (2012) Adv Energy Mater 2:381–389. https://doi.org/10.1002/aenm.201100609

    Article  CAS  Google Scholar 

  7. Xu X, Liu Y, Dong P, Ajayan PM, Shen J, Ye M (2018) J Power Sources 400:96–103. https://doi.org/10.1016/j.jpowsour.2018.08.012

    Article  CAS  Google Scholar 

  8. Shao Y, El-Kady MF, Wang LJ, Zhang Q, Li Y, Wang H, Mousavi MF, Kaner RB (2015) Chem Soc Rev 44:3639–3665. https://doi.org/10.1039/C4CS00316K

    Article  CAS  PubMed  Google Scholar 

  9. Yuan C, Wu HB, Xie Y, Lou XW (2014) Angew Chem Int Ed 53:1488–1504. https://doi.org/10.1002/anie.201303971

    Article  CAS  Google Scholar 

  10. Peng S, Li L, Wu HB, Madhavi S, Lou XW (2015) Adv Energy Mater 5:1401172. https://doi.org/10.1002/aenm.201401172

    Article  CAS  Google Scholar 

  11. Simon P, Gogotsi Y, Dunn B (2014) Science 343:1210–1211. https://doi.org/10.1126/science.1249625

    Article  CAS  PubMed  Google Scholar 

  12. Moosavifard SE, Fani S, Rahmanian M (2016) Chem Commun 52:4517–4520. https://doi.org/10.1039/C6CC00215C

    Article  CAS  Google Scholar 

  13. Li XX, Chen GF, Xiao K, Li N, Ma TY, Liu ZQ (2017) Electrochim Acta 255:153–159. https://doi.org/10.1016/j.electacta.2017.09.162

    Article  CAS  Google Scholar 

  14. Balogun MS, Qiu W, Wang W, Fang P, Lu X, Tong Y (2015) J Mater Chem 3:1364–1387. https://doi.org/10.1039/C4TA05565A

    Article  CAS  Google Scholar 

  15. Balogun MS, Huang Y, Qiu W, Yang H, Ji H, Tong Y (2017) Mater Today 20:425–451. https://doi.org/10.1016/j.mattod.2017.03.019

    Article  CAS  Google Scholar 

  16. Kaverlavani SK, Moosaviard SE, Bakouei A (2017) J Mater Chem A 5:14301–14309. https://doi.org/10.1039/C7TA03943C

    Article  CAS  Google Scholar 

  17. Chen YM, Li Z, Lou XW (2015) Angew Chem Int Ed 54:10521–10524. https://doi.org/10.1002/ange.201504349

    Article  CAS  Google Scholar 

  18. Shen L, Yu L, Wu HB, Yu XY, Zhang X, Lou XW (2015) Nat Commun 6:6694. https://doi.org/10.1038/ncomms7694

    Article  CAS  PubMed  Google Scholar 

  19. He S, Chen W (2015) J Power Sources 294:150–158. https://doi.org/10.1016/j.jpowsour.2015.06.051

    Article  CAS  Google Scholar 

  20. Ning F, Shao M, Zhang C, Xu S, Wei M, Duan X (2014) Nano Energy 7:134–142. https://doi.org/10.1016/j.nanoen.2014.05.002

    Article  CAS  Google Scholar 

  21. Wasinski K, Walkowiak M, Polrolniczak P, Lota G (2015) J Power Sour 293:42–50. https://doi.org/10.1016/j.jpowsour.2015.05.064

    Article  CAS  Google Scholar 

  22. He X, Zhao N, Qiu J, Xiao N, Yu M, Yu C, Zhang X (2013) J Mater Chem 1:9440–9448. https://doi.org/10.1039/C3TA10501F

    Article  CAS  Google Scholar 

  23. Brousse T, Belanger D, Long JW (2015) J Electrochem Soc 162:A5185. https://doi.org/10.1149/2.0201505jes

    Article  CAS  Google Scholar 

  24. Qu C, Zhao B, Jiao Y, Chen D, Dai S, Deglee BM, Chen Y, Walton KS, Zou R, Liu M (2017) ACS Energy Lett 2:1263–1269. https://doi.org/10.1021/acsenergylett.7b00265

    Article  CAS  Google Scholar 

  25. Jiang H, Dai Y, Hu Y, Chen W, Li C, Sustain ACS (2014) Chem Eng 2:70–74. https://doi.org/10.1021/sc400313y

    Article  CAS  Google Scholar 

  26. Tao J, Liu N, Ma W, Ding L, Li L, Su J, Gao Y (2013) Sci Rep 3:2286. https://doi.org/10.1038/srep02286

    Article  CAS  Google Scholar 

  27. Zhu Y, Wu Z, Jing M, Yang X, Song W, Ji X (2015) J Power Sour 273:584–590. https://doi.org/10.1016/j.jpowsour.2014.09.144

    Article  CAS  Google Scholar 

  28. Xiao Y, Lei Y, Zheng B, Gu L, Wang Y, Xiao D (2015) RSC Adv 5:21604–210613. https://doi.org/10.1039/C5RA00665A

    Article  CAS  PubMed  Google Scholar 

  29. Mei L, Yang T, Xu C, Zhang M, Chen L, Li Q, Wang T (2014) Nano Energy 3:36–45. https://doi.org/10.1016/j.nanoen.2013.10.004

    Article  CAS  Google Scholar 

  30. Yang Q, Lu ZY, Chang Z, Zhu W, Sun JQ, Liu JF, Sun XM, Duan X (2012) RSC Adv 2:1663–1668. https://doi.org/10.1039/C1RA01008E

    Article  PubMed  Google Scholar 

  31. Lang JW, Kong LB, Wu WJ, Luo YC, Kang L (2008) Chem Commun 44:4213–4215. https://doi.org/10.1039/B800264A

    Article  CAS  PubMed  Google Scholar 

  32. Hu CC, Chang KH, Lin MC, Wu YT (2006) Nano Lett 6:2690–2695. https://doi.org/10.1021/nl061576a

    Article  CAS  Google Scholar 

  33. Liu M, Kong L, Lu C, Ma X, Li X, Luo Y, Kang L (2013) J Mater Chem A 1:1380–1387. https://doi.org/10.1039/C2TA00163B

    Article  CAS  Google Scholar 

  34. Mai L, Yang F, Zhao Y, Xu X, Xu L, Luo Y (2011) Nat Commun 2:381. https://doi.org/10.1038/ncomms1387

    Article  CAS  Google Scholar 

  35. Chen S, Qiao S (2013) ACS Nano 7:10190–10196. https://doi.org/10.1021/nn404444r

    Article  CAS  Google Scholar 

  36. Patel MN, Wang X, Slanac DA, Ferrer DA, Dai S, Johnston KP, Stevenson KJ (2012) J Mater Chem 22:3160–3169. https://doi.org/10.1039/C1JM14513D

    Article  CAS  PubMed  Google Scholar 

  37. Huang L, Chen D, Ding Y, Wang ZL, Zeng Z, Liu M, Appl ACS (2013) Mater Interface 5:11159. https://doi.org/10.1021/am403367u

    Article  CAS  PubMed  Google Scholar 

  38. Peng S, Li L, Li C, Tan H, Cai R, Yu H, Mhaisalkar S, Srinivasan M, Ramakrishna S, Yan Q (2013) Chem Commun 49:10178. https://doi.org/10.1039/C3CC46034G

    Article  CAS  Google Scholar 

  39. Zhang L, Wu HB, Lou XW (2012) Chem Commun 48:6912–6914. https://doi.org/10.1039/C2CC32750C

    Article  CAS  PubMed  Google Scholar 

  40. Chen H, Jiang J, Zhang L, Wan H, Qi T, Xia D (2013) Nanoscale 5:8879–8883. https://doi.org/10.1039/C3NR02958A

    Article  CAS  Google Scholar 

  41. Zhang H, Yu X, Guo D, Qu B, Zhang M, Li Q, Wang T, Appl ACS (2013) Mater Interfaces 5:7335–7340. https://doi.org/10.1021/am401680m

    Article  CAS  Google Scholar 

  42. Shen J, Tang J, Dong P, Zhang Z, Ji J, Baines R, Ye M (2016) RSC Adv 6:13456–13460. https://doi.org/10.1039/C5RA25856A

    Article  CAS  Google Scholar 

  43. Hashikuni K, Suekuni K, Usui H, Chetty R, Ohta M, Kuroki K, Takabatake T, Watanabe K, Ohtaki M (2019) Inorg Chem 58:1425–1432. https://doi.org/10.1021/acs.inorgchem.8b02955

    Article  CAS  Google Scholar 

  44. Peng T, Qian Z, Wang J, Song D, Liu J, Liu Q, Wang P (2014) J Mater Chem A 2:19376. https://doi.org/10.1039/C4TA04246H

    Article  CAS  Google Scholar 

  45. Hafner J, Wolverton C, Ceder G (2006) MRS Bull 31:659–668. https://doi.org/10.1557/mrs2006.174

    Article  Google Scholar 

  46. Ranjan P, Kumar P, Chakraborty T, Sharma M, Sharma S (2020) Mater Chem Phys 241:122346. https://doi.org/10.1016/j.matchemphys.2019.122346

    Article  CAS  Google Scholar 

  47. Ranjan P, Chakraborty T (2020) Mat Today Comm 22:100832. https://doi.org/10.1016/j.mtcomm.2019.100832

    Article  CAS  Google Scholar 

  48. Ranjan P, Chakraborty T (2020) J Nanopart Res 20:35. https://doi.org/10.1007/s11051-019-4745-5

    Article  CAS  Google Scholar 

  49. Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, (2016)

  50. Tankov I, Yankova R (2020) Spectrochim Acta Part A 226:117545. https://doi.org/10.1016/j.saa.2019.117545

    Article  CAS  Google Scholar 

  51. Yankova R, Genieva S, Dimitrova G (2017) J Mol Struct 1141:668–677. https://doi.org/10.1016/j.molstruc.2017.04.004

    Article  CAS  Google Scholar 

  52. Liang B, Andrews L (2002) J Phys Chem A 106:6295–6301. https://doi.org/10.1021/jp0202183

    Article  CAS  Google Scholar 

  53. Liang B, Andrews L (2002) J Phys Chem A 106:6945–6951. https://doi.org/10.1021/jp025915+

    Article  CAS  Google Scholar 

  54. Hughes TF, Friesner RA (2012) J Chem Theor Comput 8:442–459. https://doi.org/10.1021/ct2006693

    Article  CAS  Google Scholar 

  55. RG. Parr, W Yang, (1989) Density functional theory of atoms and molecules (Oxford, New York).

  56. Ghosh DC, Bhattacharyya S (2004) Int J Mol Sci 5:239–264. https://doi.org/10.3390/i5050239

    Article  CAS  Google Scholar 

  57. Fujimoto H, Kato S, Yamabe S, Fukui K (1974) J Chem Phys 60:572–578. https://doi.org/10.1063/1.1681075

    Article  CAS  Google Scholar 

  58. Fujimoto H, Kato S, Yamabe S, Fukui K (1974) J Am Chem Soc 96:2024–2029. https://doi.org/10.1021/ja00814a008

    Article  Google Scholar 

  59. Ranjan P, Chakraborty T (2020) J Nanopart Res 22:280. https://doi.org/10.1007/s11051-020-05016-0

    Article  CAS  Google Scholar 

  60. Shen LF, Wang J, Xu GY, Li HS, Dou H, Zhang XG (2015) Adv Energy Mater 5:1400977. https://doi.org/10.1002/aenm.201400977

    Article  CAS  Google Scholar 

  61. Zhang ZY, Wang XG, Cui GL, Zhang AH, Zhou XH, Xu HX, Gu L (2014) Nanoscale 6:3540–3544. https://doi.org/10.1039/C3NR05885A

    Article  CAS  PubMed  Google Scholar 

  62. Yang J, Bao CX, Zhu K, Yu T, Li FM, Liu JG, Li ZS, Zou ZG (2014) Chem Commun 50:4824–4826. https://doi.org/10.1039/C4CC00001C

    Article  CAS  Google Scholar 

  63. Shi ZW, Lu H, Liu Q, Cao FR, Guo J, Deng KM, Li LA (2014) Nanoscale Res Lett 9:608. https://doi.org/10.1186/1556-276X-9-608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Du WM, Zhu ZQ, Wang YB, Liu JN, Yang WJ, Qian XF, Pang H (2014) RSC Adv 4:6998–7002. https://doi.org/10.1039/C3RA46805D

    Article  CAS  Google Scholar 

  65. Cui B, Lin H, Liu Y, Li J, Sun P, Zhao X, Liu C (2009) J Phys Chem C 113:14083. https://doi.org/10.1021/jp900028t

    Article  CAS  Google Scholar 

  66. Xia C, Li P, Gandi AN, Schwingenschogl U, Alshareef HN (2015) Chem Mater 27:6482–6485. https://doi.org/10.1021/acs.chemmater.5b01843

    Article  CAS  Google Scholar 

  67. Chen Y, Ji X, Sethumathavan V, Paul B (2018) Materials 11:2303–2310. https://doi.org/10.3390/ma11112303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Malicka E, Karolus M, Panek J, Stoklosa Z, Grori T, Gudwanski A, Sawicki B, Goraus J (2020) Phys B 581:411829. https://doi.org/10.1016/j.physb.2019.411829

    Article  CAS  Google Scholar 

  69. Bredas JL (2014) Mater Horiz 1:17–19. https://doi.org/10.1039/c3mh00098b

    Article  CAS  Google Scholar 

  70. NM. O'Boyle, AL Tenderholt, KM langner (2008) J Com Chem, 29, 839–845

  71. Chattaraj PK, Sengupta S (1999) J Phys Chem 103:6122–6126. https://doi.org/10.1021/jp990242p)

    Article  CAS  Google Scholar 

  72. Pearson RG (1987) J Chem Ed 64:561. https://doi.org/10.1021/ed064p561

    Article  CAS  Google Scholar 

  73. Parr RG, Chattaraj PK (1854) J Am Chem Soc 1991:113. https://doi.org/10.1021/ja00005a072

    Article  Google Scholar 

  74. Ranjan P, Dhail S, Venigalla S, Kumar A, Ledwani L, Chakraborty T (2015) Mat Sci-Pol 33:719–724. https://doi.org/10.1515/msp-2015-0121

    Article  CAS  Google Scholar 

  75. Parr RG, Szentpaly LV, Liu S (1999) J Am Chem Soc 121:1922–2192. https://doi.org/10.1021/ja983494x

    Article  CAS  Google Scholar 

  76. Talanov MV, Shirokov VB, Talanov VM (2016) Phys Chem Chem Phys 18:10600. https://doi.org/10.1039/C6CP00387G

    Article  CAS  PubMed  Google Scholar 

  77. Soheilnia N, Kleinke KM, Dashjav E, Cuthbert HL, Greedan JE, Kleinke H (2004) Inorg Chem 43:6473–6478. https://doi.org/10.1021/ic0495113

    Article  CAS  PubMed  Google Scholar 

  78. Lu ZW, Klein BM, Uhlenbrock S, Neuman M, Furubayashi T, Hagino T, Nagata S (1996) Phys Rev B 53:9626. https://doi.org/10.1103/PhysRevB.53.9626

    Article  CAS  Google Scholar 

  79. Khan AU, Orabi RA, Pakdel A, Fontaine JB, Gautier R, Halet JF, Mitani S, Mori T (2017) Chem Mater 29:2988–2996. https://doi.org/10.1021/acs.chemmater.6b05344

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Prabhat Ranjan and Dr. Tanmoy Chakraborty thank the Manipal University Jaipur and Sharda University for providing research facilities and computational resources.

Funding

Dr. Tanmoy Chakraborty and Dr. Prabhat Ranjan would like to thank the Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India, under Grant No. [CRG/2020/002951] and [CRG/2022/002539], respectively.

Author information

Authors and Affiliations

Authors

Contributions

PR- original draft, data curation; BS: data curation, methodology; TC and RCD: final editing and supervision

Corresponding authors

Correspondence to Tanmoy Chakraborty or Ramon Carbó-Dorca.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjan, P., Solanki, B., Chakraborty, T. et al. Theoretical investigation of some transition metal sulfides nanomaterials: CDFT approach. Theor Chem Acc 142, 39 (2023). https://doi.org/10.1007/s00214-023-02980-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-023-02980-3

Keywords

Navigation