Skip to main content
Log in

Aromaticity of Cope and Claisen rearrangements

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Claisen and Cope rearrangements are [3,3]-sigmatropic rearrangements thermally activated that occur through six-membered transition states. Although extensively investigated for decades, little is known about the magnetochemistry of these rearrangements. In view of this, we carried out an investigation based on chemical-computational models through methods based on Density Functional Theory, QTAIM, Multicenter Bond Order, NCI, GIAO, and GIMIC. We demonstrated that CCR mechanisms are concerted in which the 6-membered cyclic transition states present high aromaticity character. The molar and anisotropic susceptibility, NICS(1), and NICSzz signals were verified to have a good correlation with J (nA T−1). However, these indices demonstrated insufficient to evaluate the magnitudes of aromaticity in these transition states. Among the magnetic and topological descriptors applied in this work, the magnetically induced current density (J) proved, this to be an excellent strategy for theoretically estimative of the aromaticity of the transition states involved in the investigated rearrangements. Among the rearrangements with chair conformation, it was noted that the higher aromaticity is associated with the less favoured kinetics. For chair conformations, Claisen rearrangement (TS2) presents J = 8.63 nA T−1 and Cope (TS4) presents J = 10.43 nA T−1. However, the following order of aromaticity TS4 > TS2 > TS3 > TS1, with high paramagnetic currents in the boat conformations reducing the total current in the ring, suggests that it is not possible to establish a direct correlation between aromaticity and the kinetics of the Cope and Claisen rearrangements, since the most stable transition estate geometries are not necessarily the most aromatic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Woodward RB, Hoffmann R (1969) The conservation of orbital symmetry. Angew Chem Int Ed Engl 8:781–853. https://doi.org/10.1002/anie.196907811

    Article  CAS  Google Scholar 

  2. Cope AC, Hardy EM (1940) The introduction of substituted vinyl groups. V. A rearrangement involving the migration of an allyl group in a three-carbon system1. J Am Chem Soc 62:441–444. https://doi.org/10.1021/ja01859a055

    Article  CAS  Google Scholar 

  3. Claisen L (1912) Über Umlagerung von Phenol-allyläthern in C-Allyl-phenole. Ber Dtsch Chem Ges 45:3157–3166. https://doi.org/10.1002/cber.19120450348

    Article  CAS  Google Scholar 

  4. Ilardi EA, Stivala CE, Zakarian A (2009) [3,3]-Sigmatropic rearrangements: recent applications in the total synthesis of natural products. Chem Soc Rev 38:3133–3148. https://doi.org/10.1039/B901177N

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nowicki J (2000) Claisen, Cope and related rearrangements in the synthesis of flavour and fragrance compounds. Molecules 5:1033–1050

    Article  CAS  Google Scholar 

  6. Freitas JJR, Avelino RA, Mata MMS et al (2017) Rearranjos de claisen mais usados em síntese orgânica: uma revisão. Revista Virtual de Quimica 9

  7. Williams RV (2001) Homoaromaticity. Chem Rev 101:1185–1204. https://doi.org/10.1021/cr9903149

    Article  CAS  PubMed  Google Scholar 

  8. Graulich N (2011) The Cope rearrangement-the first born of a great family. Wiley Interdiscip Rev Comput Mol Sci. https://doi.org/10.1002/wcms.17

    Article  Google Scholar 

  9. Zelentsov S, Hessel V, Shahbazali E, Noël T (2014) The Claisen rearrangement–part 1: mechanisms and transition states, revisited with quantum mechanical calculations and ultrashort pulse spectroscopy. ChemBioEng Rev 1:23–240

    Article  Google Scholar 

  10. Rzepa HS (2007) The aromaticity of pericyclic reaction transition states. J Chem Educ. https://doi.org/10.1021/ed084p1535

    Article  Google Scholar 

  11. Jiao H, von Schleyer PR (1998) Aromaticity of pericyclic reaction transition structures: magnetic evidence. J Phys Org Chem 11:655–662

    Article  CAS  Google Scholar 

  12. Morao I, Cossío FP (1999) A simple ring current model for describing in-plane aromaticity in pericyclic reactions. J Org Chem. https://doi.org/10.1021/jo981862+

    Article  PubMed  Google Scholar 

  13. Jiao H, von RaguéSchleyer P (1995) The Cope rearrangement transition structure is not diradicaloid, but is it aromatic? Angew Chem Int Ed English. https://doi.org/10.1002/anie.199503341

    Article  Google Scholar 

  14. Domingo LR, Ríos-Gutiérrez M, Chamorro E, Pérez P (2016) Aromaticity in pericyclic transition state structures? A critical rationalisation based on the topological analysis of electron density. ChemistrySelect 1:6026–6039. https://doi.org/10.1002/slct.201601384

    Article  CAS  Google Scholar 

  15. Solà M (2017) Why aromaticity is a suspicious concept? Why? Front Chem. https://doi.org/10.3389/FCHEM.2017.00022/FULL

    Article  PubMed  PubMed Central  Google Scholar 

  16. Solà M, Feixas F, Jiménez-Halla JOC et al (2010) A critical assessment of the performance of magnetic and electronic indices of aromaticity. Symmetry 2:1156–1179

    Article  Google Scholar 

  17. Chen Z, Wannere CS, Corminboeuf C et al (2005) Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem Rev 105:3842–3888

    Article  CAS  PubMed  Google Scholar 

  18. Schleyer PV, Maerker C, Dransfeld A et al (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118:6317–6318. https://doi.org/10.1021/ja960582d

    Article  CAS  PubMed  Google Scholar 

  19. Gershoni-Poranne R, Stanger A (2014) The NICS-XY-scan: identification of local and global ring currents in multi-ring systems. Chem Eur J 20:100. https://doi.org/10.1002/chem.201304307

    Article  CAS  Google Scholar 

  20. Gershoni-Poranne R, Stanger A (2015) Magnetic criteria of aromaticity. Chem Soc Rev 44:6597–6615. https://doi.org/10.1039/C5CS00114E

    Article  CAS  PubMed  Google Scholar 

  21. Gershoni-Poranne R, Stanger A (2021) 4—NICS-Nucleus-independent Chemical Shift. In: Fernandez I (ed) Aromaticity. Elsevier, pp 99–154

    Chapter  Google Scholar 

  22. Schleyer PVR, Wu JI, Cossío FP, Fernández I (2014) Aromaticity in transition structures. Chem Soc Rev 43:4909–4921

    Article  CAS  PubMed  Google Scholar 

  23. Fliegl H, Jusélius J, Sundholm D (2016) Gauge-origin independent calculations of the anisotropy of the magnetically induced current densities. J Phys Chem A 120:5658–5664. https://doi.org/10.1021/acs.jpca.6b03950

    Article  CAS  PubMed  Google Scholar 

  24. Taubert S, Sundholm D, Jusélius J (2011) Calculation of spin-current densities using gauge-including atomic orbitals. J Chem Phys 134:054123-054123–054212. https://doi.org/10.1063/1.3549567

    Article  CAS  Google Scholar 

  25. Patra SG, Mandal N (2020) Aromaticity of N-heterocyclic carbene and its analogues: magnetically induced ring current perspective. Int J Quantum Chem. https://doi.org/10.1002/qua.26152

    Article  Google Scholar 

  26. Fliegl H, Sundholm D, Taubert S et al (2009) Magnetically induced current densities in aromatic, antiaromatic, homoaromatic, and nonaromatic hydrocarbons. J Phys Chem A 113:8668–8676. https://doi.org/10.1021/jp9029776

    Article  CAS  PubMed  Google Scholar 

  27. Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA (1999) A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J Chem Phys 110:2822–2827. https://doi.org/10.1063/1.477924

    Article  CAS  Google Scholar 

  28. Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA (2000) A complete basis set model chemistry. VII. Use of the minimum population localization method. J Chem Phys 112:6532–6542. https://doi.org/10.1063/1.481224

    Article  CAS  Google Scholar 

  29. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter 37:785–789. https://doi.org/10.1103/physrevb.37.785

    Article  CAS  PubMed  Google Scholar 

  30. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  31. Woon DE, Dunning TH (1993) Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J Chem Phys 98:1358–1371. https://doi.org/10.1063/1.464303

    Article  CAS  Google Scholar 

  32. Wolinski K, Hinton JF, Pulay P (1990) Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc 112:8251–8260. https://doi.org/10.1021/ja00179a005

    Article  CAS  Google Scholar 

  33. Sundholm D, Fliegl H, Berger RJF (2016) Calculations of magnetically induced current densities: theory and applications. Wiley Interdiscip Rev Comput Mol Sci 6:639–678. https://doi.org/10.1002/wcms.1270

    Article  CAS  Google Scholar 

  34. Ahrens J, Geveci B, Law C (2005) Paraview: an end-user tool for large data visualization. Vis Handb. https://doi.org/10.1016/B978-012387582-2/50038-1

    Article  Google Scholar 

  35. Pastorczak E, Corminboeuf C (2017) Perspective: found in translation: Quantum chemical tools for grasping non-covalent interactions. J Chem Phys 146:120901. https://doi.org/10.1063/1.4978951

    Article  CAS  PubMed  Google Scholar 

  36. Contreras-García J, Boto RA, Izquierdo-Ruiz F et al (2016) A benchmark for the non-covalent interaction (NCI) index or… is it really all in the geometry? Theor Chem Acc 135:242. https://doi.org/10.1007/s00214-016-1977-7

    Article  CAS  Google Scholar 

  37. Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev. https://doi.org/10.1021/cr00005a013

    Article  Google Scholar 

  38. Bader RFW (1994) Atoms in molecules: a quantum theory, 22nd edn. Oxford University Press, Oxford

    Google Scholar 

  39. Keith T (2019) AIMAll, Version 19.10.12

  40. Contreras-García J, Johnson ER, Keinan S et al (2011) NCIPLOT: a program for plotting noncovalent interaction regions. J Chem Theory Comput. https://doi.org/10.1021/ct100641a

    Article  PubMed  PubMed Central  Google Scholar 

  41. Laplaza R, Peccati F, Arias-Olivares D, Contreras-García J (2021) 14 Visualizing non-covalent interactions with NCIPLOT. In: Grabowsky S (ed). De Gruyter, pp 353–378

  42. Boto RA, Peccati F, Laplaza R et al (2020) NCIPLOT4: a new step towards a fast quantification of noncovalent interactions. ChemRxiv

  43. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  44. Frisch MJ, Trucks GW, Schlegel HB et al. Gaussian∼09 Revision D.01

  45. Adrienko GA (2015) ChemCraft, V. 1.8

  46. Schlegel HB (1982) Optimization of equilibrium geometries and transition structures. J Comput Chem 3:214–218. https://doi.org/10.1002/jcc.540030212

    Article  CAS  Google Scholar 

  47. Dominikowska MJP (2012) EL: the new aromaticity measure based on one-electron density function. Struct Chem 23:1173–1183. https://doi.org/10.1007/s11224-011-9941-6

    Article  CAS  Google Scholar 

  48. Wiest O, Montiel DC, Houk KN (1997) Quantum mechanical methods and the interpretation and prediction of pericyclic reaction mechanisms. J Phys Chem A 101:8378–8388

    Article  CAS  Google Scholar 

  49. Dewar MJS (1966) A molecular orbital theory of organic chemistry-VIII: romaticity and electrocyclic reactions. Tetrahedron. https://doi.org/10.1016/S0040-4020(01)82171-2

    Article  Google Scholar 

  50. Boto RA, Peccati F, Laplaza R et al (2020) NCIPLOT4: fast, robust, and quantitative analysis of noncovalent interactions. J Chem Theory Comput. https://doi.org/10.1021/acs.jctc.0c00063

    Article  PubMed  Google Scholar 

  51. Mandado M, González-Moa MJ, Mosquera RA (2007) Characterization of pericyclic reactions using multicenter electron delocalization analysis. ChemPhysChem 8:696–702. https://doi.org/10.1002/cphc.200600682

    Article  CAS  PubMed  Google Scholar 

  52. Noorizadeh S, Shakerzadeh E (2010) Shannon entropy as a new measure of aromaticity, Shannon aromaticity. Phys Chem Chem Phys 12:4742–4749. https://doi.org/10.1039/B916509F

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

T.S.C. and G.F.M. acknowledges CAPES/PPGQ-UnB for PhD scholarship. S.F. de A.M. acknowledges CNPq for the scholarship (Grant 165726/2020-2). D.A.C.F. is grateful to the SESu/MEC/PETQuímica-UnB for the tutor fellowship.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the full development of this article.

Corresponding author

Correspondence to Daví A. C. Ferreira.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2160 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro, T.S., Martins, G.F., de Alcântara Morais, S. et al. Aromaticity of Cope and Claisen rearrangements. Theor Chem Acc 142, 40 (2023). https://doi.org/10.1007/s00214-023-02975-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-023-02975-0

Keywords

Navigation