Skip to main content
Log in

The Pseudo Jahn–Teller effect and NBO analysis for untangling the symmetry breaking in the planar configurations of M2X4+ (M = Si, Ge and X = Cl, Br, I): effect on electronic structure and chemical properties

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

The Pseudo Jahn- Teller effect is a significant tool for evaluating molecular distortion and symmetry breaking. The PJT effect associated with NBO analysis can be a powerful method for studying the structural properties variations arising from D2h → C2h distortions. The theoretical studies on Si2X4+ and Ge2X4+ radical cations have been rare. The calculations have shown that C2h non-planar structures are more stable than planar structures with D2h symmetry. The \(({B}_{3u}+{B}_{1u})\otimes {b}_{2g}\) PJTE problem of M2X4+ compounds is a result of the coupling between the ground B3u state and the exited B1u state in the Qb2g direction causes. Also, the difference in M and X atoms can affect the PJT instability of compounds. The findings of this work show that the energy gap between the ground and excited states that have D2h symmetry decreases from M2Cl4+ to M2I4+ and increases from Si2X4+ to Ge2X4+. In fact, there is a significant relationship between instability of high-symmetry configurations, geometric parameters, electron delocalization, chemical hardness, electronegativity, electrophilicity index, and PJT stabilization energies. These results may serve to evaluate the distortion of similar systems.

Methods

The structures of Si2X4+ and Ge2X4+ are optimized by LC˗BLYP, M06˗2X, and B3LYP methods with def2˗TZVPP basis set in GAMESS software. The details of the excited states of compounds are studied by the TD-DFT method. NBO analysis for planar and non˗planar structures is carried out at B3LYP/def2˗TZVPP level by the NBO 5. G program that demonstrates HOMO, LUMO, ED, bonding and antibonding orbital occupancies, bond order, and E2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Pseudo Jahn–Teller:

(PJT)

Natural Bond Orbital:

(NBO)

Electron delocalization:

(ED)

M2X4 + :

(M = Si, Ge, X = Cl, Br, I)

Density functional theory:

(DFT)

Adiabatic potential energy surface:

(APES)

Time-dependent density functional theory:

(TD-DFT)

The PJT stabilization energies:

(ΔEPJT)

The highest occupied molecular orbital:

(HOMO)

The lowest unoccupied molecular orbital:

(LUMO)

Localized molecular orbitals:

(LMO)

Canonical molecular orbitals:

(CMO)

The stabilization energy:

(E2)

Wiberg bond index matrix:

(WBI)

The natural atomic charges:

(NAC)

The natural atomic orbitals:

(NAO)

Hardness:

(η)

Electronegativity:

(χ)

Chemical potential:

(μ)

Electrophilicity index:

(ω)

Electron donating power:

)

Electron accepting power:

+)

Net electrophilicity:

(∆ω±)

References

  1. D. Nori-Shargh, S. N. Mousavi and J. E. Boggs, J. Phys. Chem. A, 2013, 117, 1621 Pseudo Jahn−Teller Effect and Natural Bond Orbital Analysis of Structural Properties of Tetrahydridodimetallenes M2H4, (M = Si, Ge,and Sn) https://doi.org/10.1021/jp310389q

  2. Inoue Sh, Ichinohe M, Sekiguchi A (2008) The Isolable Cation Radical of Disilene: Synthesis, Characterization, and a Reversible One-Electron Redox System. J AM CHEM SOC 130:6078–6079

    Article  CAS  PubMed  Google Scholar 

  3. Schorpp M, Heizmann T, Schmucker RS, Weber S, Krossing I (2020) Synthesis and Application of a Perfluorinated Ammoniumyl Radical Cation as a Very Strong Deelectronator. Angew Chem Int Ed 59:9453–9459

    Article  CAS  Google Scholar 

  4. Rivard E (2016) Group 14 inorganic hydrocarbon analogues. Chem Soc Rev 45:989–1003

    Article  CAS  PubMed  Google Scholar 

  5. Krogh-Jespersen K (1982) Geometries and relative energies of singlet silylsilylene and singlet disilene. J Phys Chem 86(9):1492–1495

    Article  CAS  Google Scholar 

  6. Power PP (2020) An Update on Multiple Bonding between Heavier Main Group Elements: The Importance of Pauli Repulsion, Charge-Shift Character, and London Dispersion Force Effects. Organometallics 39(23):4127–4138

    Article  CAS  Google Scholar 

  7. Kouchakzadeh G, Nori-Shargh D (2015) Symmetry breaking in the planar configurations of disilicon tetrahalides: Pseudo-Jahn–Teller effect parameters, hardness and electronegativity. Phys Chem Chem Phys 17:29251–29261

    Article  CAS  PubMed  Google Scholar 

  8. Bersuker IB (2006) The Jahn-Teller Effect. Cambridge University Press, New York

    Book  Google Scholar 

  9. Ilkhani AR, Monajjemi M (2015) The pseudo Jahn-Teller effect of puckering in pentatomic unsaturated rings C4AE5, A = N, P, As, E = H, F. Cl Comput Theor Chem 1074:19–25

    Article  CAS  Google Scholar 

  10. Liu Y, Wang Y, Bersuker IB (2016) Geometry, Electronic Structure, and Pseudo Jahn-Teller Effect in Tetrasilacyclobutadiene Analogues. Sci Rep 6:23315

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bersuker IB, Polinger V (2020) Perovskite Crystals: Unique Pseudo-Jahn–Teller Origin of Ferroelectricity, Multiferroicity, Permittivity, Flexoelectricity, and Polar Nanoregions. Condens Matter 5(4):68

    Article  CAS  Google Scholar 

  12. Kanakati AK, Rani VJ, Mahapatra. (2022) The Jahn-Teller and pseudo-Jahn–Teller effects in the propyne radical cation. Phys Chem Chem Phys 24:16522–16537

    Article  CAS  PubMed  Google Scholar 

  13. Garcia-Fernandez P, Liu Y, Bersuker IB, Boggs JE (2011) Pseudo Jahn-Teller origin of cis-trans and other conformational changes. The role of double bonds. Phys Chem Chem Phys 13:3502–3513

    Article  CAS  PubMed  Google Scholar 

  14. Nori-Shargh D, Weinhold F (2018) Natural Bond Orbital Theory of Pseudo-Jahn-Teller effects. J Phys Chem A 122:4490–4498

    Article  CAS  PubMed  Google Scholar 

  15. Kouchakzadeh G (2021) The Connection between Pseudo-Jahn–Teller-Effect and Electron Delocalization for Proving the Origin of Equilibrium Geometry of Nitrosyl Halides (Halides = Cl, Br, and I). Russ J Phys Chem A 95(2):332–342

    Article  Google Scholar 

  16. Trinquier G, Barthelat JC (1990) Structures of X2F4, from carbon to lead. Unsaturation through fluorine bridges in Group 14. J Am Chem Soc 112:9121–9130

    Article  CAS  Google Scholar 

  17. Li Q, Li G, Xu W, Xie Y, Schaefer HF III (2002) Molecules for Materials: Structures, Thermochemistry, and Electron Affinities of the Digermanium Fluorides Ge2Fn/Ge2F (n=1–6): A Wealth of Unusual Structures. Chem Phys Chem 3(2):179–194

    Article  CAS  PubMed  Google Scholar 

  18. Liang C, Allen LC (1990) Group IV double bonds: shape deformation and substituent effects. J Am Chem Soc 112(3):1039–1041

    Article  CAS  Google Scholar 

  19. Allen TL, Fink WH, Power pp. (2000) Theoretical studies of multiple bonds in gallium–gallium and germanium–germanium compounds. J Chem Soc Dalton Trans 3:407–412

    Article  Google Scholar 

  20. Kouchakzadeh G, Jamehbozorgi S (2019) The Role of Pseudo Jahn-Teller Effect in Geometry and Electronic Parameters of Tetrahalodigermene Ge2X4 (X= Cl, Br, I). Russ J Phys Chem A 93(7):1297–1304

    Article  CAS  Google Scholar 

  21. West R (1987) Chemistry of the Silicon-Silicon Double Bond. Angew Chem Int Ed Engl 26(12):1201–1211

    Article  Google Scholar 

  22. Lalov AV, Boganov SE, Faustov VI, Egorov MP, Nefedov OM (2003) Experimental and quantum-chemical study of complexation of carbene analogs with dinitrogen. Direct IR-spectroscopic observation of Cl2Si·N2 complexes in low-temperature argon-nitrogen matrices. Russ Chem Bull 52:526–538

    Article  CAS  Google Scholar 

  23. Karni M, Apeloig Y (1990) Substituent effects on the geometries and energies of the silicon-silicon double bond. J Am Chem Soc 112(23):8589–8590

    Article  CAS  Google Scholar 

  24. Mondal KC, Dittrich B, Maity B, Koley D, Roesky HW (2014) Cyclic Alkyl(amino) Carbene Stabilized Biradical of Disilicontetrachloride. J Am Chem Soc 136(27):9568–9571

    Article  CAS  PubMed  Google Scholar 

  25. Varga Z, Hargittai M (2013) Group 14 structural variations: perhalo derivatives of the ‘“dimetallenes”’: dicarbenes, disilenes, digermenes, distannenes, and diplumbenes. Struct Chem 24:837–850

    Article  CAS  Google Scholar 

  26. Timms PL, Kent RA, Ehlert TC, Margrave JL (1965) Silicon-Fluorine Chemistry. I. Silicon Difluoride and the Perfluorosilanes. J Am Chem Soc 87(13):2824–2828

    Article  CAS  Google Scholar 

  27. Marsmann HC, Raml W, Hengge E (1980) 29Si-Kernresonanzmessungen an Polysilanen. 2. Isotetrasilane / 29Si NMR Measurements on Polysilanes. 2. Isotetrasilanes. Z Naturforsch B 35(12):1541–1547

    Article  Google Scholar 

  28. Tawada Y, Tsuneda T, Yanagisawa S, Yanai T, Hirao K (2004) A long-range-corrected time-dependent density functional theory. J Chem Phys 120(18):8425–8433

    Article  CAS  PubMed  Google Scholar 

  29. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  30. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  31. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305

    Article  CAS  PubMed  Google Scholar 

  32. Weigend F (2006) Accurate Coulomb-fitting basis sets for H to Rn. Phys Chem Chem Phys 8:1057–1065

    Article  CAS  PubMed  Google Scholar 

  33. Gordon MS, Schmidt MW (2005) Advances in Electronic Structure Theory: GAMESS a Decade Later. In: Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) Theory and Applications of Computational Chemistry: The First Forty Years. Elsevier, Amsterdam, pp 1167–1189

    Chapter  Google Scholar 

  34. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14(11):1347–1363

    Article  CAS  Google Scholar 

  35. Assadi M H N, Hanaor D (2013) Theoretical study on copper’s energetics and magnetism in TiO2 polymorphs. J Appl Phys 113(23). https://doi.org/10.1063/1.4811539

  36. Sitkiewicz SP, Zaleśny R, Ramos-Cordoba E, Luis JM, Matito E (2022) How reliable are modern density functional approximations to simulate vibrational spectroscopies? J Phys Chem Lett 13(25):5963–5968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Levine, I N (2014) Quantum Chemistry. Pearson

  38. Dokmaisrijan S, Kungwan N (2019) LC-BLYP Calculations of the Structures and Photophysical Properties of [1,3]Thiazolo[4,5-b]pyrazine Derivatives in Cyclohexane and Methanol. Journal of Physical Chemistry A 123(50):10685–10693. https://doi.org/10.1021/acs.jpca.9b09074

    Article  CAS  PubMed  Google Scholar 

  39. Lu L (2015) Can B3LYP be improved by optimization of the proportions of exchange and correlation functionals? Int J Quantum Chem 115(8):502–509

    Article  CAS  Google Scholar 

  40. Kodikara MS, Stranger R, Humphrey MG (2018) Long-Range corrected DFT calculations of first hyperpolarizabilities and excitation energies of metal alkynyl complexes. Chem Phys Chem 19(12):1537–1546

    Article  CAS  PubMed  Google Scholar 

  41. Foresman JB, Frisch A (2015) Exploring Chemistry with Electronic Structure Methods, 3rd ed. (Gaussian, Wallingford, CT)

  42. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2004) NBO Version 5.G, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI. NBO7 Website: https://nbo7.chem.wisc.edu/ or https://nbo6.chem.wisc.edu/nboman.pdf

  43. Reed AE, Weinhold F (1985) Natural localized molecular orbitals. J Chem Phys 83(4):1736–1740. https://doi.org/10.1063/1.449360

    Article  CAS  Google Scholar 

  44. Chang TC, Chin J (1996) The Bonding Nature of the Canonical Molecular Orbitals in Simple Diatomic Molecules. Chem Soc TAIP 43(1):1–5

    Google Scholar 

  45. Weinhold F, Landis CR (2001) Natural Bond Orbitals and Extensions of Localized Bonding Concepts. J Chem Educ Res Pract Eur 2:91–104

    Article  CAS  Google Scholar 

  46. Weinhold F, Landis CR (2012) (2012) Discovering Chemistry with Natural Bond Orbitals. Wiley, New York

    Book  Google Scholar 

  47. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Landis CR, Weinhold F (2013) NBO 6.0. University of Wisconsin, Boston Theoretical Chemistry Institute, Madison, WI

    Google Scholar 

  48. Ilkhani AR (2020) Non-planarity in four-membered homo-cyclic compounds A4 (A = O, S, Se, Te, Po) and restoring their planarity: a study of the pseudo-Jahn–Teller effect. Theor Chem Acc 139:99

    Article  CAS  Google Scholar 

  49. Mahmoudzadeh G, Ghiasi R, Pasdar H (2019) Computational Investigation of the Pseudo Jahn-Teller Effect on the Structure and Chemical Properties of PERHALOETHENE Anions. J Struct Chem 60(5):736–745

    Article  CAS  Google Scholar 

  50. Bersuker IB (2021) The Jahn-Teller and Pseudo-Jahn–Teller Effects: AUnique and Only Source of Spontaneous Symmetry Breaking in Atomic Matter. Symmetry 13:1577

    Article  CAS  Google Scholar 

  51. Ilkhani AR (2019) Manipulation of planar structure of 1,2,5- and 1,3,4-triazoles and the pseudo Jahn-Teller effect in their 1-pnictogen derivatives. Chem Pap 73:85–94

    Article  CAS  Google Scholar 

  52. Gorinchoy NN (2018) Buckybowl Structure of Sumanenes and Distortions of Thiophenes Induced by the Pseudo Jahn-Teller Effect. J Phys Conf Ser 1148:012005

    Article  Google Scholar 

  53. Gorinchoy NN, Ogurtsov IY, Arsene I (2008) Vibronic Origin of the “SKEWED” anticline Configuration of the Hydrogen Peroxide Molecule. Chem J Mold 3(1):105–111

    Article  Google Scholar 

  54. Bersuker IB (2013) Pseudo-Jahn–Teller Effect—A Two-State Paradigm in Formation, Deformation, and Transformation of Molecular Systems and Solids. Chem Rev 113:1351–1390

    Article  CAS  PubMed  Google Scholar 

  55. Bersuker IB (2021) Jahn−Teller and Pseudo-Jahn−Teller Effects: From Particular Features to General Tools in Exploring Molecular and Solid State Properties. Chem Rev 121:1463–1512

    Article  CAS  PubMed  Google Scholar 

  56. Ilkhani AR (2019) The symmetry breaking phenomenon in heteronine analogues due to the pseudo Jahn-Teller effect. J Mol Model 25:8

    Article  PubMed  Google Scholar 

  57. Ilkhani AR, Hermoso W (2020) Manifestation of descent symmetry phenomena in tetrahedral structure of M42+ (M = P, As, Sb) analogues. Bull Mater Sci 43:293

    Article  CAS  Google Scholar 

  58. Bersuker IB (2012) Pseudo Jahn-Teller Origin of Perovskite Multiferroics, Magnetic-Ferroelectric Crossover, and Magnetoelectric Effects: The d0d10 Problem. Phys Rev Lett 108:137202

    Article  PubMed  Google Scholar 

  59. Longuet-Higgins HC, Opik U, Price MHL, Sack RA (1958) Studies of the Jahn-Teller effect. II. The dynamical problem. Proc R Soc London A 244:1–16

    Article  CAS  Google Scholar 

  60. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88(6):899–926

    Article  CAS  Google Scholar 

  61. Carter-Fenk K, Mundy CJ, Herbert JM (2021) Natural Charge-Transfer Analysis: Eliminating Spurious Charge-Transfer States in Time-Dependent Density Functional Theory via Diabatization, with Application to Projection-Based Embedding. J Chem Theory Comput 17:4195–4210

    Article  CAS  PubMed  Google Scholar 

  62. Ghanbarpour P, NoriShargh D (2016) Exploring the origin of the anomeric relationships in 2-cyanooxane, 2-cyanothiane, 2-cyanoselenane and their corresponding isocyano isomers. Correlations between hyper-conjugative anomeric effect, hardness and electrostatic interactions. RSC Adv 6:46406–46420

    Article  CAS  Google Scholar 

  63. Chattaraj PK (1996) The Maximum hardness principle: An overview. Proc Indian Natl Sci Acad 62A(6):513–531

    Google Scholar 

  64. Glossman-Mitnik D (2013) Computational study of the chemical reactivity properties of the Rhodamine B molecule. Procedia Computer Science 18:816–825

    Article  Google Scholar 

  65. Chattaraj PK, Chakraborty A, Giri S (2009) Net electrophilicity. J Phys Chem A 113(37):10068–10074

    Article  CAS  PubMed  Google Scholar 

  66. Rezvani M, Ganji MD, Jameh-Bozorghi S, Hиaзи A (2018) DFT/TD- semiempirical study on the structural and electronic properties and absorption spectra of supramolecular fullerene-porphyrine-metalloporphyrine triads based dye-sensitized solar cells. Spectrochim Acta A Mol Biomol Spectrosc 194:57–66

    Article  CAS  PubMed  Google Scholar 

  67. Sarazin Y Chapple P M. (2022b) Calcium, strontium and barium complexes in organic synthesis. In Elsevier eBooks (pp. 104–192). https://doi.org/10.1016/B978-0-12-820206-7.00069-X

  68. Ghahramanpour M, Jamehbozorgi S, Rezvani M (2020) The effect of encapsulation of lithium atom on supramolecular triad complexes performance in solar cell by using theoretical approach. Adsorption 26(3):471–489

    Article  CAS  Google Scholar 

  69. Chattaraj PK, Sarkar U, Roy DR (2006) Electrophilicity Index. Chem Rev 106(6):2065–2091

    Article  CAS  PubMed  Google Scholar 

  70. Jameh-Bozorghi S, Ghahramanpour M, Rezvani M (2022) The role of insertion of Li atom in C60-Porphyrin-Metalloporphyrin, M = (V, Cr, Ni, Cu) as dyes in the DSSC by using the theoretical outlook. Int J New Chem 2:102–128

    Google Scholar 

  71. Komorowski L (1987) Electronegativity and hardness in the chemical approximation 114(1):55–71

    CAS  Google Scholar 

  72. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105(26):7512–7516

    Article  CAS  Google Scholar 

  73. Pearson RG, Palke WE (1992) Support for a principle of maximum hardness. J Phys Chem 96(8):3283–3285

    Article  CAS  Google Scholar 

  74. Pearson RG (1987) Recent advances in the concept of hard and soft acids and bases. J Chem Educ 64(7):561

    Article  CAS  Google Scholar 

  75. Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: The Density Functional Viewpoint. J Chem Phys 68:3801–3807

    Article  CAS  Google Scholar 

  76. Flores-Holguı́N N, Salas-Leiva J, Glossman-Mitnik D. (2023) Computational Discovery of Marine Molecules of the Cyclopeptide Family with Therapeutic Potential. Pharm 16(10):1377

    Google Scholar 

  77. Moghim MT, Jamehbozorgi S, Rezvani M, Ramezani M (2022) Computational investigation on the geometry and electronic structures and absorption spectra of metal-porphyrin-oligo- phenyleneethynylenes-[60] fullerene triads. Spectrochim Acta A Mol Biomol Spectrosc 280:121488

    Article  Google Scholar 

  78. Martínez-Araya JI, Salgado-Morán G, Glossman-Mitnik D (2013) Computational Nanochemistry Report on the OxiCAMs—Conceptual DFT indices and chemical reactivity. J Phys Chem B 117(21):6339–6351

    Article  PubMed  Google Scholar 

  79. Miller JS, Calabrese JC, Rommelmann H, Chittipeddi SR, Zhang JH, Reiff WM, Epstein AJ (1987) Ferromagnetic behavior of [Fe(C5Me5)2]+ .bul. [TCNE]- .bul. Structural and magnetic characterization of decamethylferrocenium tetracyanoethenide, [Fe(C5Me5)2]+ .bul. [TCNE]- .bul.. cntdot.MeCN and decamethylferrocenium pentacyanopropenide,[Fe(C5Me5)2]+ .bul. [C3(CN)5]. J Am Chem Soc 109(3):769–781

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Professor Dr Davood Nori-Shargh for very useful and instructive guidance.

Funding

No Funding.

Author information

Authors and Affiliations

Authors

Contributions

Ghazaleh Kouchakzadeh and Golrokh Mahmoudzadeh carried out computational calculations and analyzed them together, and finalized the results of the manuscript. Ghazaleh Kouchakzadeh wrote the manuscript. The authors were contributed in this research work.

Corresponding author

Correspondence to Ghazaleh Kouchakzadeh.

Ethics declarations

Ethical approval

Ethical approval is not applicable for this research work.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kouchakzadeh, G., Mahmoudzadeh, G. The Pseudo Jahn–Teller effect and NBO analysis for untangling the symmetry breaking in the planar configurations of M2X4+ (M = Si, Ge and X = Cl, Br, I): effect on electronic structure and chemical properties. J Mol Model 30, 1 (2024). https://doi.org/10.1007/s00894-023-05792-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05792-1

Keywords

Navigation