Skip to main content
Log in

Structure and stability of a new set of noble gas insertion compounds, XNgOPO(OH)2 (X = F, Cl, Br; Ng = Kr, Xe, Rn): an in silico investigation

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

An in silico strategy of handling the thermochemical stability of XOPO(OH)2 compounds (X = F, Cl, Br) is performed by insertion of noble gas (Ng) atoms (Ng = Kr, Xe and Rn) within the X–O bond. The theoretical prediction of the set of new compounds, XNgOPO(OH)2 (X = F, Cl, Br; Ng = Kr, Xe, Rn) and their thermochemical stability are investigated using both ab initio and density-functional theory techniques considering different possible dissociation channels. The Ng (Kr–Rn) inserted analogues show that these compounds exist in their corresponding minima on their respective potential-energy surfaces. Most importantly, the release of Ng atom resulting in the formation of the bare XOPO(OH)2 and free Ng is thermochemically favorable. However, this process has very high activation energy barriers, thus kinetically protecting it from undergoing the said dissociation at room temperature. All other possible two-body and three-body ionic as well as neutral dissociation pathways are endergonic at 298 K. The generation of new Ng-based insertion compounds offers a hitherto unknown strategy of the metastable behavior of these compounds. A thorough description of the X–Ng and Ng–O bonds in XNgOPO(OH)2 compounds is provided with the help of natural bond orbital, Wiberg bond index, electron density, and energy decomposition analyses, and the more favorable representation of the compounds is proclaimed in our present discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pauling L (1933) The formulas of antimonic acid and the antimonates. J Am Chem Soc 55:1895–1900

    Article  CAS  Google Scholar 

  2. Bartlett N (1962) Proc Chem Soc Lond 218:197–236

    Google Scholar 

  3. Khriachtchev L, Pettersson M, Runeberg N, Lundell J, Rasänen M (2000) A stable argon compound. Nature (Lond, UK) 406:874–876

    Article  CAS  Google Scholar 

  4. Khriachtchev L, Pettersson M, Lignell A, Rasänen M (2001) A more stable configuration of HArF in solid argon. J Am Chem Soc 123:8610–8611

    Article  CAS  PubMed  Google Scholar 

  5. Thompson CA, Andrews L (1994) Noble gas complexes with BeO: infrared spectra of Ng–BeO (Ng = Ar, Kr, Xe). J Am Chem Soc 116:423–424

    Article  CAS  Google Scholar 

  6. Thompson CA, Andrews L (1994) Reactions of laser ablated Be atoms with O2: infrared spectra of beryllium oxides in solid argon. J Chem Phys 100:8689–8699

    Article  CAS  Google Scholar 

  7. Evans CJ, Gerry MCL (2000) The microwave spectra and structures of Ar–AgX (X = F, Cl, Br). J Chem Phys 112:1321–1329

    Article  CAS  Google Scholar 

  8. Evans CJ, Gerry MCL (2000) Noble gas–metal chemical bonding? The microwave spectra, structures, and hyperfine constants of Ar–CuX (X = F, Cl, Br). J Chem Phys 112:9363–9374

    Article  CAS  Google Scholar 

  9. Evans CJ, Rubinoff DS, Gerry MCL (2000) Noble gas-metal chemical bonding: the microwave spectra geometries and nuclear hyperfine constants of Ar–AuF and Ar–AuBr. Phys Chem Chem Phys 2:3943–3948

    Article  CAS  Google Scholar 

  10. Evans CJ, Lesarri A, Gerry MCL (2000) Noble gas–metal chemical bonds. microwave spectra, geometries and nuclear quadrupole coupling constants of Ar–AuCl and Kr–AuCl. J Am Chem Soc 122:6100–6105

    Article  CAS  Google Scholar 

  11. Reynard LM, Evans CJ, Gerry MCL (2001) Microwave spectrum, structure and hyperfine constants of Kr–AgCl: formation of a weak Kr–Ag covalent bond. J Mol Spectrosc 206:33–40

    Article  CAS  PubMed  Google Scholar 

  12. Walker NR, Reynard LM, Gerry MCL (2002) The microwave spectrum and structure of KrAgF. J Mol Struct 612:109–116

    Article  CAS  Google Scholar 

  13. Michaud JM, Cooke SA, Gerry MCL (2004) Rotational spectra, structures, hyperfine constants, and the nature of the bonding of KrCuF and KrCuCl. Inorg Chem 43:3871–3881

    Article  CAS  PubMed  Google Scholar 

  14. Thomas JM, Walker NR, Cooke SA, Gerry MCL (2004) Microwave spectra and structures of KrAuF, KrAgF and KrAgBr; 83Kr nuclear quadrupole coupling and the nature of noble gas–noble metal halide bonding. J Am Chem Soc 126:1235–1246

    Article  CAS  PubMed  Google Scholar 

  15. Cooke SA, Gerry MCL (2004) Insights into the xenon–silver halide interaction from a rotational spectroscopic study of XeAgF and XeAgCl. Phys Chem Chem Phys 6:3248–3256

    Article  CAS  Google Scholar 

  16. Cooke SA, Gerry MCL (2004) XeAuF. J Am Chem Soc 126:17000–17008

    Article  CAS  PubMed  Google Scholar 

  17. Michaud JM, Gerry MCL (2006) XeCu covalent bonding in XeCuF and XeCuCl, characterised by fourier transform microwave spectroscopy supported by quantum chemical calculations. J Am Chem Soc 128:7613–7621

    Article  CAS  PubMed  Google Scholar 

  18. Seidel S, Seppelt K (2000) Xenon as a complex ligand: the tetra Xenono gold (II) cation in AuXe42+ (Sb2F11)2. Science 290:117–118

    Article  CAS  PubMed  Google Scholar 

  19. Feldman VI, Sukhov FF, Orlov AY, Tyulpina IV (2003) Experimental evidence for the formation of HXeCCH: the first hydrocarbon with an inserted rare-gas atom. J Am Chem Soc 125:4698–4699

    Article  CAS  PubMed  Google Scholar 

  20. Khriachtchev L, Tanskanen H, Lundell J, Pettersson M, Kiljunen H, Räsänen M (2003) Fluorine-free organoxenon chemistry: HXeCCH, HXeCC, and HXeCCXeH. J Am Chem Soc 125:4696–4697

    Article  CAS  PubMed  Google Scholar 

  21. Khriachtchev L, Domanskaya A, Lundell J, Akimov A, Räsänen M, Misochko E (2010) Matrix-isolation and ab initio study of HNgCCF and HCCNgF molecules (Ng = Ar, Kr, and Xe). J Phys Chem A 114:4181–4187

    Article  CAS  PubMed  Google Scholar 

  22. Zhu C, Räsänen M, Khriachtchev L (2015) Matrix-isolation and ab initio study of HKrCCCl and HXeCCCl. J Chem Phys 143:244319

    Article  PubMed  Google Scholar 

  23. Khriachtchev L, Tanskanen H, Cohen A, Gerber RB, Lundell J, Pettersson M, Kiljunen H, R-s-nen M (2003) A gate to organokrypton chemistry: HKrCCH. J Am Chem Soc 125:6876

    Article  CAS  PubMed  Google Scholar 

  24. Tanskanen H, Khriachtchev L, Lundell J, Räsänen M (2004) Organo-noble-gas hydride compounds HKrCCH, HXeCCH, HXeCC, and HXeCCXeH: formation mechanisms and effect of 13 C isotope substitution on the vibrational properties. J Chem Phys 121:8291–8298

    Article  CAS  PubMed  Google Scholar 

  25. Arppe T, Khriachtchev L, Lignell A, Domanskaya AV, Räsänen M (2012) Halogenated xenon cyanides ClXeCN, ClXeNC, and BrXeCN. Inorg Chem 51:4398–4402

    Article  CAS  PubMed  Google Scholar 

  26. Pettersson M, Lundell J, Khriachtchev L, Räsänen M (1998) Neutral rare-gas containing charge-transfer molecules in solid matrices III. HXeCN, HXeNC, and HKrCN in Kr and Xe. J Chem Phys 109:618–625

    Article  CAS  Google Scholar 

  27. Tanskanen H, Khriachtchev L, Lundell J, Kiljunen H, Räsänen M (2003) Chemical compounds formed from diacetylene and rare-gas atoms: HKrC4H and HXeC4H. J Am Chem Soc 125:16361–16366

    Article  CAS  PubMed  Google Scholar 

  28. Khriachtchev L, Lignell A, Tanskanen H, Lundell J, Kiljunen H, Räsänen M (2006) Insertion of noble gas atoms into cyanoacetylene: An ab initio and matrix isolation study. J Phys Chem A 110:11876–11885

    Article  CAS  PubMed  Google Scholar 

  29. Jana G, Pal R, Chattaraj PK (2021) XNgNSi (X = HCC, F; Ng = Kr, Xe, Rn): A new class of metastable insertion compounds containing Ng–C/F and Ng–N bonds and possible isomerization therein. J Phys Chem A 125:10514–10523

    Article  CAS  PubMed  Google Scholar 

  30. Willmann K, Vent-Schmidt T, Räsänen M, Riedel S, Khriachtchev L (2015) Matrix-isolation and computational study of the HKrCCH⋯HCCH complex. RSC Adv 5:35783–35791

    Article  CAS  Google Scholar 

  31. Zhu C, Tsuge M, Räsänen M, Khriachtchev L (2015) Experimental and theoretical study of the HXeI⋯HCl and HXeI⋯HCCH complexes. J Chem Phys 142:144306

    Article  PubMed  Google Scholar 

  32. Duarte L, Khriachtchev L (2017) Matrix-isolation and theoretical study of the HXeCCXeH⋯HCCH and HXeCC⋯HCCH complexes. RSC adv 7:813–820

    Article  CAS  Google Scholar 

  33. Pan S, Jana G, Ravell E, Zarate X, Osorio E, Merino G, Chattaraj PK (2018) Stable NCNgNSi (Ng = Kr, Xe, Rn) compounds with covalently bound C–Ng–N unit: possible isomerization of NCNSi through the release of the noble gas atom. Chem A Eur J 24:2879–2887

    Article  CAS  Google Scholar 

  34. Mercier HPA, Breddemann U, Brock DS, Bortolus MR, Schrobilgen GJ (2019) Syntheses, structures and bonding of NgF2·CrOF4, NgF2·2CrOF4 (Ng = Kr, Xe), and (CrOF4)∞. Chem Eur J 25:12105–12119

    Article  CAS  PubMed  Google Scholar 

  35. Grochala W, Khriachtchev L, Räsänen M (2011) Noble-gas chemistry. In: Khriachtchev L (ed) Physics and chemistry at low temperatures. CRC Press, Boca Raton, pp 419–446

    Chapter  Google Scholar 

  36. Eisenberg M, Desmarteau DD (1972) Xenon (II) difluorophosphates. Preparations, properties, and evidence for the difluorophosphate free radical. Inorg Chem 11:1901–1904

    Article  CAS  Google Scholar 

  37. Musher JI (1968) Organic esters of xenon. J Am Chem Soc 90:7371–7372

    Article  CAS  Google Scholar 

  38. Bartlett N, Wechsberg M, Jones GR, Burbank RD (1972) Crystal structure of xenon (II) fluoride fluorosulfate, FXeOSO2F. Inorg Chem 11:1124–1127

    Article  CAS  Google Scholar 

  39. Wechsberg M, Bulliner PA, Sladky FO, Mews R, Bartlett N (1972) Fluorosulfates and perchlorates of xenon (II) and the salt [(FXeO) 2S (O) F]+[AsF6]-. Inorg Chem 11:3063–3070

    Article  CAS  Google Scholar 

  40. Naumann D, Tyrra W, Gnann R, Pfolk DJ (1994) Synthesis of arylxenon trifluoromethanesulfonates via electrophilic substitution of F- and CF3-substituted aromatics. Chem Soc Chem Commun 22:2651–2653

    Article  Google Scholar 

  41. Syvret RG, Schrobilgen GJ (1989) FXeOIOF4 and Xe (OIOF4) 2: preparation and study by xenon-129 and fluorine-19 NMR spectroscopy and Raman spectroscopy and NMR characterization of LXeOIOF4 (L = − OTeF5, − OSO2F). Inorg Chem 28:1564–1573

    Article  CAS  Google Scholar 

  42. Seppelt K, Nothe D (1973) Stability of xenon (II) compounds. Pentafluorooxyselenium and pentafluorooxytellurium radicals. Bis (pentafluorotellurium) peroxide and chlorine pentafluoroorthotellurate. Inorg Chem 12:2727–2730

    Article  CAS  Google Scholar 

  43. Seppelt K, Lentz D, Klöter G, Schack CJ (1986) Selenium tetrafluoride, selenium difluoride oxide (seleninyl fluoride), and xenon bis [pentafluorooxoselenate (VI)]. Inorg Synth 24:27–31

    CAS  Google Scholar 

  44. Sladky F (1970) Zur Chemie des Xenons, 1. Mitt.: Xenon (II)-bis (pentafluoro-orthotellurat), Xe (OTeF5)2. Monatsh Chem 101:1559–1570

    Article  CAS  Google Scholar 

  45. Sladky F (1970) Zur Chemie des Xenons, 2. Mitt.: Xenon (II)-fluorid-pentafluoro-orthotellurat, FXeOTeF5 und das System XeF2–CF3COOH. Monatsh Chem 101:1571–1577

    Article  CAS  Google Scholar 

  46. Schumacher GA, Schrobilgen GJ (1984) Preparation of O2XeF2-x (OTeF5) x, OXeF4-y (OTeF5) y and XeF4-y (OTeF5) y (x= 0–2, y= 0–4) and study by xenon-129 and fluorine-19 NMR and Raman spectroscopy: the oxygen primary isotopic effect in the xenon-129 NMR spectra of xenon (VI) oxyfluorides (XeO2F2 and XeOF4). Inorg Chem 23:2923–2929

    Article  CAS  Google Scholar 

  47. Jacob E, Lentz D, Seppelt K, Simon A (1981) Edelgasverbindungen mit dem Liganden–OTeF5. Z Anorg Allg Chem 472:7–25

    Article  CAS  Google Scholar 

  48. Moran MD, Brock DS, Mercier HP, Schrobilgen GJ (2010) Xe3OF3+, a precursor to a noble-gas nitrate; syntheses and structural characterizations of FXeONO2, XeF2·HNO3, and XeF2·N2O4. J Am Chem Soc 132:13823–13839

    Article  CAS  PubMed  Google Scholar 

  49. Catti M, Ferraris G (1974) Hydrogen bonding in the crystalline state. NaH2PO4, a crystal structure with a short symmetrical hydrogen bond. Acta Cryst. Sec B: Struct Cryst Cryst Chem 30:1–6

    Article  CAS  Google Scholar 

  50. Bader RFW (1990) Atoms in molecules a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  51. Reed AE, Weinhold F (1983) Natural bond orbital analysis of near Hartree–Fock water dimer. J Chem Phys 78:4066–4073

    Article  CAS  Google Scholar 

  52. Glendening ED, Landis CR, Weinhold F (2013) NBO 60: Natural bond orbital analysis program. J Comput Chem 34:1429–1437

    Article  CAS  PubMed  Google Scholar 

  53. Morokuma K (1977) Why do molecules interact? The origin of electron donor-acceptor complexes, hydrogen bonding and proton affinity. Acc Chem Res 10:294–300

    Article  CAS  Google Scholar 

  54. Ziegler T, Rauk A (1977) On the calculation of bonding energies by the Hartree Fock Slater method. Theor Chim Acta 46:1–10

    Article  CAS  Google Scholar 

  55. Hopffgarten MV, Frenking G (2012) Energy decomposition analysis. Wiley Interdiscip Rev Comput Mol Sci 2:43–62

    Article  Google Scholar 

  56. Zhao Y, Truhlar DG (2004) Hybrid meta density functional theory methods for thermochemistry, thermochemical kinetics, and noncovalent interactions: the MPW1B95 and MPWB1K models and comparative assessments for hydrogen bonding and van der Waals interactions. J Phys Chem A 108:6908–6918

    Article  CAS  Google Scholar 

  57. Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46:618

    Article  Google Scholar 

  58. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305

    Article  CAS  PubMed  Google Scholar 

  59. Cundari TR (1994) Calculation of a methane carbon-hydrogen oxidative addition trajectory: comparison to experiment and methane activation by high-valent complexes. J Am Chem Soc 116:340–347

    Article  CAS  Google Scholar 

  60. Song J, Hall MB (1993) Theoretical studies of inorganic and organometallic reaction mechanisms. 6. Methane activation on transient cyclopentadienylcarbonylrhodium. Organometallics 12:3118–3126

    Article  CAS  Google Scholar 

  61. Koga N, Morokuma K (1990) Ab initio potential energy surface and electron correlation effect in CH activation of methane by coordinatively unsaturated chlorodiphosphinerhodium (I). J Phys Chem 94:5454–5462

    Article  CAS  Google Scholar 

  62. Wiberg KB (1968) Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 24:1083–1096

    Article  CAS  Google Scholar 

  63. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H et al (2016) Gaussian 16, Rev. B.01; Gaussian, Inc.: Wallingford, CT

  64. Baerends EJ, Ziegler T, Autschbach J, Bashford D, Bérces A, Bickelhaupt FM, Bo C, Boerrigter PM, Cavallo L, Chong DP, et al (2014) ADF2013.01, SCM; Theoretical Chemistry, Vrije Universiteit, Amsterdam, 2014.01

  65. Huzinaga S, Miguel B (1990) A comparison of the geometrical sequence formula and the well-tempered formulas for generating GTO basis orbital exponents. Chem Phys Lett 175:289–291

    Article  CAS  Google Scholar 

  66. Huzinaga S, Klobukowski M (1993) Well-tempered Gaussian basis sets for the calculation of matrix Hartree–Fock wavefunctions. Chem Phys Lett 212:260–264

    Article  CAS  Google Scholar 

  67. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  PubMed  Google Scholar 

  68. Te Velde GT, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJ, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22:931–967

    Article  Google Scholar 

  69. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  CAS  PubMed  Google Scholar 

  70. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Article  PubMed  Google Scholar 

  71. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465

    Article  CAS  PubMed  Google Scholar 

  72. Nemec N, Towler MD, Needs RJ (2010) Benchmark all-electron ab initio quantum Monte Carlo calculations for small molecules. J Chem Phys 132:034111

    Article  PubMed  Google Scholar 

  73. van Lenthe E, Ehlers A, Baerends EJ (1999) Geometry optimizations in the zero order regular approximation for relativistic effects. J Chem Phys 110:8943–8953

    Article  Google Scholar 

  74. van Lenthe E, Baerends EJ, Snijders JG (1993) Relativistic regular two-component Hamiltonians. J Chem Phys 99:4597–4610

    Article  Google Scholar 

  75. van Lenthe E, Baerends EJ, Snijders JG (1994) Relativistic total energy using regular approximations. J Chem Phys 101:9783–9792

    Article  Google Scholar 

  76. van Lenthe E, Snijders J, Baerends E (1996) The zero-order regular approximation for relativistic effects: the effect of spin–orbit coupling in closed shell molecules. J Chem Phys 105:6505–6516

    Article  Google Scholar 

  77. Van Lenthe E, Van Leeuwen R, Baerends E, Snijders J (1996) Relativistic regular two-component Hamiltonians. Int J Quantum Chem 57:281–293

    Article  Google Scholar 

  78. Macchi P, Proserpio DM, Sironi A (1998) Experimental electron density in a transition metal dimer: metal–metal and metal–ligand bonds. J Am Chem Soc 120:13429–13435

    Article  CAS  Google Scholar 

  79. Macchi P, Garlaschelli L, Martinengo S, Sironi A (1999) Charge density in transition metal clusters: supported vs unsupported metal–metal interactions. J Am Chem Soc 121:10428–10429

    Article  CAS  Google Scholar 

  80. Cremer D, Kraka E (1984) Chemical bonds without bonding electron density ← does the difference electron-density analysis suffice for a description of the chemical bond? Angew Chem Int Ed Engl 23:627–628

    Article  Google Scholar 

  81. Ziółkowski M, Grabowski SJ, Leszczynski J (2006) Cooperativity in hydrogen-bonded interactions: ab initio and “atoms in molecules” analyses. J Phys Chem A 110:6514–6521

    Article  PubMed  Google Scholar 

  82. Pan S, Saha R, Chattaraj PK (2015) Exploring the nature of silicon-noble gas bonds in H3SiNgNSi and HSiNgNSi compounds (Ng = Xe, Rn). Int J Mol Sci 16:6402–6418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tonner R, Frenking G (2008) Divalent carbon (0) chemistry, part 1: parent compounds. Chem Eur J 14:3260–3272

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

PKC thanks 'Theoretical Chemistry Accounts' for publishing a “Festschrift" in his honor, on the occasion of his sixty-fifth birthday. He thanks Dr. Utpal Sarkar for kindly inviting him to contribute an article to the same. He also thanks DST, New Delhi, for the J. C. Bose National Fellowship, grant number SR/S2/JCB-09/2009. RP thanks CSIR for her fellowship, and GJ thanks IIT Kharagpur. We acknowledge National Supercomputing Mission (NSM) for providing computing resources of ‘PARAM Shakti’ at IIT Kharagpur, which is implemented by C-DAC and supported by the Ministry of Electronics and Information Technology and Department of Science and Technology (DST), Government of India.

Author information

Authors and Affiliations

Authors

Contributions

R.P. and G.J. conceptualized the work, performed the calculations, wrote the main manuscript text, and prepared figures and tables. P.K.C. supervised the work, edited the final manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Pratim Kumar Chattaraj.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest regarding the publication of this article, financial, and/or otherwise.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, R., Jana, G. & Chattaraj, P.K. Structure and stability of a new set of noble gas insertion compounds, XNgOPO(OH)2 (X = F, Cl, Br; Ng = Kr, Xe, Rn): an in silico investigation. Theor Chem Acc 142, 34 (2023). https://doi.org/10.1007/s00214-023-02973-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-023-02973-2

Keywords

Navigation