Skip to main content
Log in

Exploring an intermolecular Ge/B frustrated Lewis pair from a multicentre Zintl Lewis base

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The possible existence of nonagermanide deltahedral Zintl ion (Ge94−) as a nine-folded Lewis base is investigated from first principles calculations. It is observed that all nine centres, Ge94−, can make an adduct with Lewis acid. The presence of lone pairs is confirmed from the 1c–2e AdNDP calculation. It is further noticed that the bulky group functionalized organo-Zintl cluster, [Ge9(tBu)3] , can potentially act as a Lewis base and can make an intermolecular frustrated Lewis pair (FLP) with a well-known Lewis acid Tris[2,4,6-tris(trifluoromethyl)phenyl] borane, [B{C6H2(CF3)3}3].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zintl E, Harder A (1931) Z Phys Chem 154A:47. https://doi.org/10.1515/zpch-1931-15403

    Article  Google Scholar 

  2. Zintl E, Dullenkopf W (1932) Z Phys Chem 16B:183. https://doi.org/10.1515/zpch-1932-1615

    Article  Google Scholar 

  3. Mingos DMP (1972) Nature. Phys Sci 236:99

    CAS  Google Scholar 

  4. Mingos DMP (1984) Acc Chem Res 17:311. https://doi.org/10.1021/ar00105a003

    Article  CAS  Google Scholar 

  5. Wade K (1971) J Chem Soc D p 792

  6. Knight WD, Clemenger K, de Heer WA, Saunders WA, Chou MY, Cohen ML (1984) Phys Rev Lett 52:2141

    Article  CAS  Google Scholar 

  7. Perla LG, Muñoz-Castro A, Sevov SC (2017) J Am Chem Soc 139:15176. https://doi.org/10.1021/jacs.7b08562

    Article  CAS  PubMed  Google Scholar 

  8. Li F, Sevov SC (2012) Inorg Chem 51:2706. https://doi.org/10.1021/ic202744d

    Article  CAS  PubMed  Google Scholar 

  9. Hull MW, Sevov SC (2009) J Am Chem Soc 131:9026. https://doi.org/10.1021/ja9025962

    Article  CAS  PubMed  Google Scholar 

  10. Ugrinov A, Sevov SC (2002) J Am Chem Soc 124:10990. https://doi.org/10.1021/ja026679j

    Article  CAS  PubMed  Google Scholar 

  11. Quéneau V, Todorov E, Sevov SC (1998) J Am Chem Soc 120:3263. https://doi.org/10.1021/ja980044w

    Article  Google Scholar 

  12. Andre Clayborne P, Häkkinen H (2012) Phys Chem Chem Phys 14:9311. https://doi.org/10.1039/C2CP23229D

    Article  CAS  PubMed  Google Scholar 

  13. Wang Y, McGrady JE, Sun Z-M (2021) Acc Chem Res 54:1506. https://doi.org/10.1021/acs.accounts.0c00876

    Article  CAS  PubMed  Google Scholar 

  14. Li A-M, Wang Y, Zavalij PY, Chen Y-S, Muñoz-Castro A, Eichhorn BW (2021) Inorg Chem 60:14697. https://doi.org/10.1021/acs.inorgchem.1c01799

    Article  CAS  PubMed  Google Scholar 

  15. Muñoz-Castro A, Takahashi K (2017) J Phys Chem C 121:1934. https://doi.org/10.1021/acs.jpcc.6b10251

    Article  CAS  Google Scholar 

  16. Kysliak O, Schnepf A (2016) Dalton Trans 45:2404. https://doi.org/10.1039/C5DT04022A

    Article  CAS  PubMed  Google Scholar 

  17. Perla LG, Sevov SC (2016) J Am Chem Soc 138:9795. https://doi.org/10.1021/jacs.6b06545

    Article  CAS  PubMed  Google Scholar 

  18. Geitner FS, Klein W, Storcheva O, Tilley TD, Fässler TF (2019) Inorg Chem 58:13293. https://doi.org/10.1021/acs.inorgchem.9b02158

    Article  CAS  PubMed  Google Scholar 

  19. Mayer K, Klein W, Fässler TF (2019) Chem Commun 55:12156. https://doi.org/10.1039/C9CC06388A

    Article  CAS  Google Scholar 

  20. Schenk C, Schnepf A (2009). Chem Commun. https://doi.org/10.1039/B901870K

    Article  Google Scholar 

  21. Frischhut S, Bentlohner MM, Klein W, Fässler TF (2017) Inorg Chem 56:10691. https://doi.org/10.1021/acs.inorgchem.7b01643

    Article  CAS  PubMed  Google Scholar 

  22. Hull MW, Sevov SC (2007) Inorg Chem 46:10953. https://doi.org/10.1021/ic702151q

    Article  CAS  PubMed  Google Scholar 

  23. Chapman DJ, Sevov SC (2008) Inorg Chem 47:6009. https://doi.org/10.1021/ic800383c

    Article  CAS  PubMed  Google Scholar 

  24. Báez-Grez R, Garza J, Vásquez-Espinal A, Osorio E, Rabanal-León WA, Yañez O, Tiznado W (2019) Inorg Chem 58:10057. https://doi.org/10.1021/acs.inorgchem.9b01206

    Article  CAS  PubMed  Google Scholar 

  25. Xu Y-H, Tkachenko NV, Popov IA, Qiao L, Muñoz-Castro A, Boldyrev AI, Sun Z-M (2021) Nat Commun 12:4465. https://doi.org/10.1038/s41467-021-24706-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu C, Sun Z-M (2019) Coord Chem Rev 382:32. https://doi.org/10.1016/j.ccr.2018.12.003

    Article  CAS  Google Scholar 

  27. Giri S, Reddy GN, Jena P (2016) J Phys Chem Lett 7:800. https://doi.org/10.1021/acs.jpclett.5b02892

    Article  CAS  PubMed  Google Scholar 

  28. Naaresh Reddy G, Parida R, Muñoz-Castro A, Jana M, Giri S (2020) Chem Phys Lett 759:137952. https://doi.org/10.1016/j.cplett.2020.137952

    Article  CAS  Google Scholar 

  29. Reddy GN, Parida R, Giri S (2017) Chem Commun 53:13229. https://doi.org/10.1039/C7CC08120K

    Article  CAS  Google Scholar 

  30. Reddy GN, Parida R, Chakraborty A, Giri S (2018) Chem A Eur J 24:13654. https://doi.org/10.1002/chem.201802713

    Article  CAS  Google Scholar 

  31. Xue D, Wu D, Chen Z, Li Y, Sun W, Liu J, Li Z (2021) Inorg Chem 60:3196

    Article  CAS  PubMed  Google Scholar 

  32. Reddy GN, Jena P, Giri S (2017) Chem Phys Lett 686:195. https://doi.org/10.1016/j.cplett.2017.08.056

    Article  CAS  Google Scholar 

  33. Ahsin A, Ayub K (2021) Mater Sci Semicond Process 134:105986. https://doi.org/10.1016/j.mssp.2021.105986

    Article  CAS  Google Scholar 

  34. Sun WM, Wu D, Kang J, Li CY, Chen JH, Li Y, Li ZR (2018) J Alloys Compd 740:400

    Article  CAS  Google Scholar 

  35. Sajid H, Malik S, Rashid U, Mahmood T, Ayub K (2021) Comput Theor Chem 1199:113191. https://doi.org/10.1016/j.comptc.2021.113191

    Article  CAS  Google Scholar 

  36. Weinert B, Weigend F, Dehnen S (2012) Chem A Eur J 18:13589. https://doi.org/10.1002/chem.201202369

    Article  CAS  Google Scholar 

  37. Parida R, Ganguly S, Das G, Giri S (2020) J Phys Chem A 124:7248. https://doi.org/10.1021/acs.jpca.0c03254

    Article  CAS  PubMed  Google Scholar 

  38. Tkachenko NV, Boldyrev AI (2019) Chem Sci 10:5761. https://doi.org/10.1039/C9SC00929A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. King RB, Silaghi-Dumitrescu I (2008). Dalton Trans. https://doi.org/10.1039/B803958E

    Article  PubMed  Google Scholar 

  40. Wallach C, Geitner FS, Karttunen AJ, Fässler TF (2021) Angew Chem Int Ed 60:2648. https://doi.org/10.1002/anie.202012336

    Article  CAS  Google Scholar 

  41. Wallach C, Geitner FS, Fässler TF (2021) Chem Sci 12:6969. https://doi.org/10.1039/D1SC00811K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Welch GC, Stephan DW (2007) J Am Chem Soc 129:1880. https://doi.org/10.1021/ja067961j

    Article  CAS  PubMed  Google Scholar 

  43. Stephan DW, Erker G (2010) Angew Chem Int Ed 49:46. https://doi.org/10.1002/anie.200903708

    Article  CAS  Google Scholar 

  44. Chai JD, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615

    Article  CAS  PubMed  Google Scholar 

  45. Courtemanche M-A, Légaré M-A, Maron L, Fontaine F-G (2014) J Am Chem Soc 136:10708. https://doi.org/10.1021/ja5047846

    Article  CAS  PubMed  Google Scholar 

  46. Patel TR, Ganguly B (2021) J Phys Organ Chem 34:e4250. https://doi.org/10.1002/poc.4250

    Article  CAS  Google Scholar 

  47. Zubarev DY, Boldyrev AI (2008) Phys Chem Chem Phys 10:5207. https://doi.org/10.1039/B804083D

    Article  CAS  PubMed  Google Scholar 

  48. Averkiev BB, Zubarev DY, Wang L-M, Huang W, Wang L-S, Boldyrev AI (2008) J Am Chem Soc 130:9248. https://doi.org/10.1021/ja801211p

    Article  CAS  PubMed  Google Scholar 

  49. Lu T, Chen F (2012) J Theor Comput Chem 11:163. https://doi.org/10.1142/S0219633612500113

    Article  CAS  Google Scholar 

  50. Frisch MJ (2009) http://www.gaussian.com/

  51. Lu T, Chen F (2012) J Comput Chem 33:580

    Article  PubMed  Google Scholar 

  52. Foster JP, Weinhold F (1980) J Am Chem Soc 102:7211. https://doi.org/10.1021/ja00544a007

    Article  CAS  Google Scholar 

  53. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899. https://doi.org/10.1021/cr00088a005

    Article  CAS  Google Scholar 

  54. Rokob TA, Hamza A, Stirling A, Soós T, Pápai I (2008) Angew Chem Int Ed 47:2435. https://doi.org/10.1002/anie.200705586

    Article  CAS  Google Scholar 

  55. Rokob TA, Hamza A, Stirling A, Pápai I (2009) J Am Chem Soc 131:2029. https://doi.org/10.1021/ja809125r

    Article  CAS  PubMed  Google Scholar 

  56. Mulliken RS (1952) J Phys Chem 56:801. https://doi.org/10.1021/j150499a001

    Article  CAS  Google Scholar 

  57. Morell C, Grand A, Toro-Labbe A (2005) J Phys Chem A 109:205

    Article  CAS  PubMed  Google Scholar 

  58. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) J Am Chem Soc 132:6498. https://doi.org/10.1021/ja100936w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu S, Hu H, Pedersen LG (2010) J Phys Chem A 114:5913. https://doi.org/10.1021/jp101329f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu S (2007) J Chem Phys 126:244103. https://doi.org/10.1063/1.2747247

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors feel deeply honoured to contribute their work in this special issue dedicated to their beloved teacher, Prof. Pratim K. Chattaraj on his 65th birthday. Financial support from the DST SERB grant (CRG/2019/001125) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Swapan Sinha did all the necessary calculations. Santanab Giri and Arindam Chakraborty analysed the results and prepared the manuscript.

Corresponding author

Correspondence to Arindam Chakraborty.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1042 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, S., Giri, S. & Chakraborty, A. Exploring an intermolecular Ge/B frustrated Lewis pair from a multicentre Zintl Lewis base. Theor Chem Acc 142, 21 (2023). https://doi.org/10.1007/s00214-023-02961-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-023-02961-6

Keywords

Navigation