Skip to main content
Log in

Synthesis, Crystal Structure, Hirshfeld Surface and Computational Analysis of Bis-[2-(3,4-dihydroxyphenyl)-4,5-diphenyl-1H-imidazol-3-ium] Oxalate Ethanol Solvate

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Bis-[2-(3,4-dihydroxyphenyl)-4,5-diphenyl-1H-imidazol-3-ium] Oxalate ethanol solvate crystal has been isolated from slow solvent evaporation method and the structure was characterized by FT-IR, NMR and Single crystal XRD. The compound crystallizes in the triclinic space group P \(\overline{1 }\) with a = 7.7925(16), b = 10.716(3), c = 13.952(3), α = 106.545(5), β = 97.514(5), γ = 110.152(5), V = 1014.0(4) Å3 and Z = 1. The single crystal X-ray data of the compound confirms two proton transfers from an oxalic acid to the pyrimidine-type-nitrogen of two separate imidazole rings. The structure and symmetry of the Imidazolium Oxalate is dictated by N–H⋯O and O–H⋯O hydrogen bonding interactions and are confirmed by hydrogen bonding analysis and hirshfeld surface analysis. The partial double bond character in the imidazolium ring confirms delocalization across the molecular framework. The partial double bond character of the C–O bonds also confirms delocalization in the oxalate anion. The crystal is 3-dimensional structure, with crystal growth in all the crystallographic axis. Computational analysis [DFT, B3LYP/6-311G(d,p)] reveals close correlation of the constrained optimized structure with the experimental data.

Graphical Abstract

Imidazolium oxalate crystal form by the protonation of Imidazole compound and complex formation with oxalate ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available in the supplementary materials and crystal data is available in CCDC. (https://www.ccdc.cam.ac.uk/structures/Search?access=referee&ccdc=2245593&Author=Peter+solo).

References

  1. Bosshard C, Spreiter R, Meier U et al (1999) Organic Materials for Second-Order Nonlinear Optic. In: Dario B, Fabrizia G (eds) Crystal Engineering From Molecules and Crystals to Materials. Springer, Dordrecht

    Google Scholar 

  2. Farchioni R, Grosso G (2001) Organic electronic materials. Springer, Berlin

    Book  Google Scholar 

  3. Kwak HS, An Y, Giesen DJ et al (2022) Design of organic electronic materials with a goal-directed generative model powered by deep neural networks and high-throughput molecular simulations. Front Chem. https://doi.org/10.3389/fchem.2021.800370

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kuo C-J, Li T-Y, Lien C-C et al (2009) Bis(phenanthroimidazolyl)biphenyl derivatives as saturated blue emitters for electroluminescent devices. J Mater Chem 19:1865. https://doi.org/10.1039/b816327h

    Article  CAS  Google Scholar 

  5. Wang ZM, Song XH, Gao Z et al (2012) Tuning of the electronic and optical properties of 4,4’-bis(1-phenyl-phenanthro[9,10-d]imidazol-2-yl)biphenyl via cyano substitution in un-conjugated phenyl. RSC Adv 2:9635. https://doi.org/10.1039/c2ra21054a

    Article  CAS  Google Scholar 

  6. Wang Z, Li X, Xue K et al (2016) Towards stable deep-blue emission and low efficiency roll-off in OLEDs based on phenanthroimidazole dimers. J Mater Chem C Mater 4:1886–1894. https://doi.org/10.1039/C5TC04048E

    Article  CAS  Google Scholar 

  7. Zhang Y, Lai S-L, Tong Q-X et al (2012) High efficiency nondoped deep-blue organic light emitting devices based on imidazole-π-triphenylamine derivatives. Chem Mater 24:61–70. https://doi.org/10.1021/cm201789u

    Article  CAS  Google Scholar 

  8. Zhang H, Li A, Li G et al (2020) Achievement of high-performance nondoped blue OLEDs based on AIEgens via construction of effective high-lying charge-transfer state. Adv Opt Mater 8:1902195. https://doi.org/10.1002/adom.201902195

    Article  CAS  Google Scholar 

  9. Zhang Y, Lai S-L, Tong Q-X et al (2011) Synthesis and characterization of phenanthroimidazole derivatives for applications in organic electroluminescent devices. J Mater Chem 21:8206. https://doi.org/10.1039/c1jm10326a

    Article  CAS  Google Scholar 

  10. Huang Z, Xiang S, Zhang Q et al (2018) Highly efficient green organic light emitting diodes with phenanthroimidazole-based thermally activated delayed fluorescence emitters. J Mater Chem C Mater 6:2379–2386. https://doi.org/10.1039/C7TC05576E

    Article  CAS  Google Scholar 

  11. Xu Y, Liang X, Liang Y et al (2019) Efficient deep-blue fluorescent OLEDs with a high exciton utilization efficiency from a fully twisted phenanthroimidazole-anthracene emitter. ACS Appl Mater Interfaces 11:31139–31146. https://doi.org/10.1021/acsami.9b10823

    Article  CAS  PubMed  Google Scholar 

  12. Huang H, Wang Y, Zhuang S et al (2012) Simple phenanthroimidazole/carbazole hybrid bipolar host materials for highly efficient green and yellow phosphorescent organic light-emitting diodes. J Phys Chem C 116:19458–19466. https://doi.org/10.1021/jp305764b

    Article  CAS  Google Scholar 

  13. Liao Y-L, Lin C-Y, Wong K-T et al (2007) A novel ambipolar spirobifluorene derivative that behaves as an efficient blue-light emitter in organic light-emitting diodes. Org Lett 9:4511–4514. https://doi.org/10.1021/ol701994k

    Article  CAS  PubMed  Google Scholar 

  14. Chen C-H, Huang W-S, Lai M-Y et al (2009) Versatile, benzimidazole/amine-based ambipolar compounds for electroluminescent applications: single-layer, blue, fluorescent OLEDs, hosts for single-layer, phosphorescent OLEDs. Adv Funct Mater 19:2661–2670. https://doi.org/10.1002/adfm.200900561

    Article  CAS  Google Scholar 

  15. Lai M-Y, Chen C-H, Huang W-S et al (2008) Benzimidazole/amine-based compounds capable of ambipolar transport for application in single-layer blue-emitting OLEDs and as hosts for phosphorescent emitters. Angew Chem Int Ed 47:581–585. https://doi.org/10.1002/anie.200704113

    Article  CAS  Google Scholar 

  16. Yang X, Zheng S, Bottger R et al (2011) Efficient fluorescent deep-blue and hybrid white emitting devices based on carbazole/benzimidazole compound. J Phys Chem C 115:14347–14352. https://doi.org/10.1021/jp203115c

    Article  CAS  Google Scholar 

  17. Zhang Z, Zhang H, Jiao C et al (2015) 2-(2-Hydroxyphenyl)benzimidazole-based four-coordinate boron-containing materials with highly efficient deep-blue photoluminescence and electroluminescence. Inorg Chem 54:2652–2659. https://doi.org/10.1021/ic502815q

    Article  CAS  PubMed  Google Scholar 

  18. Zhang T, Zhang R, Zhao Y, Ni Z (2018) A new series of N -substituted tetraphenylethene-based benzimidazoles: aggregation-induced emission, fast-reversible mechanochromism and blue electroluminescence. Dyes Pigm 148:276–285. https://doi.org/10.1016/j.dyepig.2017.09.018

    Article  CAS  Google Scholar 

  19. Lee J, Shizu K, Tanaka H et al (2015) Controlled emission colors and singlet–triplet energy gaps of dihydrophenazine-based thermally activated delayed fluorescence emitters. J Mater Chem C Mater 3:2175–2181. https://doi.org/10.1039/C4TC02530J

    Article  CAS  Google Scholar 

  20. Takizawa S, Montes VA, Anzenbacher P (2009) Phenylbenzimidazole-based new bipolar host materials for efficient phosphorescent organic light-emitting diodes. Chem Mater 21:2452–2458. https://doi.org/10.1021/cm9004954

    Article  CAS  Google Scholar 

  21. Gong S, Zhao Y, Yang C et al (2010) Tuning the photophysical properties and energy levels by linking spacer and topology between the benzimidazole and carbazole units: bipolar host for highly efficient phosphorescent OLEDs. J Phys Chem C 114:5193–5198. https://doi.org/10.1021/jp100034r

    Article  CAS  Google Scholar 

  22. Ge Z, Hayakawa T, Ando S et al (2008) Spin-coated highly efficient phosphorescent organic light-emitting diodes based on bipolar triphenylamine-benzimidazole derivatives. Adv Funct Mater 18:584–590. https://doi.org/10.1002/adfm.200700913

    Article  CAS  Google Scholar 

  23. Priya BS, RajanBabu D (2023) Structural, optical and mechanical properties of Di Imidazolium oxalate monohydrate single crystals. J Mol Struct 1291:135980. https://doi.org/10.1016/j.molstruc.2023.135980

    Article  CAS  Google Scholar 

  24. Callear SK, Hursthouse MB, Threlfall TL (2010) A systematic study of the crystallisation products of a series of dicarboxylic acids with imidazole derivatives. CrystEngComm 12:898–908. https://doi.org/10.1039/B917191F

    Article  CAS  Google Scholar 

  25. Rachocki A, Pogorzelec-Glaser K, Tritt-Goc J (2008) 1H NMR relaxation studies of proton-conducting imidazolium salts of dicarboxylic acids. Appl Magn Reson 34:163–173. https://doi.org/10.1007/s00723-008-0088-6

    Article  CAS  Google Scholar 

  26. Dolomanov OV, Bourhis LJ, Gildea RJ et al (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 42:339–341. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  27. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64:112–122. https://doi.org/10.1107/S0108767307043930

    Article  CAS  PubMed  Google Scholar 

  28. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr C Struct Chem 71:3–8. https://doi.org/10.1107/S2053229614024218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Frisch CJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, Revision A.02

  30. Spackman PR, Turner MJ, McKinnon JJ et al (2021) CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J Appl Crystallogr 54:1006–1011. https://doi.org/10.1107/S1600576721002910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  32. Jeffrey GA, Parry GS (1952) 947 The structure of the oxalate ion. J Chem Soc. https://doi.org/10.1039/jr9520004864

    Article  Google Scholar 

  33. Xi N, Huang Q, Liu L (2008) Comprehensive heterocyclic chemistry. Elsevier, Hoboken

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to St. Joseph’s College (A) Jakhama, for providing all the facilities to perform the research work. The authors also acknowledge SAIC, Tezpur University, for the high-quality single crystal XRD data collection.

Author information

Authors and Affiliations

Authors

Contributions

Peter Solo: conceptualization, original draft, writing, software, validation, investigation. M. Arockia doss: methodology, supervision, review and editing.

Corresponding author

Correspondence to Peter Solo.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 792 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solo, P., Arockia doss, M. Synthesis, Crystal Structure, Hirshfeld Surface and Computational Analysis of Bis-[2-(3,4-dihydroxyphenyl)-4,5-diphenyl-1H-imidazol-3-ium] Oxalate Ethanol Solvate. J Chem Crystallogr (2024). https://doi.org/10.1007/s10870-024-01016-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10870-024-01016-3

Keywords

Navigation