Skip to main content
Log in

DFT exploration of the electronic, optical, phonon and thermoelectrical performances of bulk and monolayered AuCN

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Recent nanoscience and technology are rapidly progressing with both experimental and theoretical surveys to discover and propose new materials in the fields of semiconductors, optoelectronics, etc. So, in this research, titled physical performances of bulk and monolayered gold cyanides (AuCN) were addressed via density functional theory. Wide indirect semiconductor bandgaps of 2.48 eV and 4.06 eV were obtained for bulk and monolayered AuCN, respectively. Obtained optical characteristics were found to be complex in nature depending mostly on crystal structures of bulk and monolayered crystals and the incident polarization direction. Further, both bulk and monolayer counterparts of AuCN intend alternative materials for applied microelectronics due to their low-dielectric constants below 1.5. Both bulk and monolayered AuCN can be also used as possible functional solar cell components because of their infrared (IR) conductivities. Similarly, both structures were found to be good optical absorbents for ultraviolet applications. Unlike monolayered AuCN, bulk AuCN was found to be a high-refractor material for practical IR goals. Calculated phonon dispersion curves with positive frequencies express the potential experimental synthesis of the addressed compounds. High Seebeck coefficients with 2800 × 10−6 V/K for bulk AuCN and 2700 × 10−6 V/K monolayered counterpart promote the possible fabrication of new thermoelectric materials from these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Lemme MC, Akinwande D, Huyghebaert C, Stampfer C (2022) 2D materials for future heterogeneous electronics. Nat Commun 13:1–5

    Article  Google Scholar 

  2. Kaushal P, Khanna G (2022) The role of 2-Dimensional materials for electronic devices. Mater Sci Semicond Process 143:106546

    Article  CAS  Google Scholar 

  3. Yu W, Gong K, Li Y, Ding B, Li L, Xu Y, Wang R, Li L, Zhang G, Lin S (2022) Flexible 2D materials beyond graphene: synthesis, properties, and applications. Small 18:2105383

    Article  CAS  Google Scholar 

  4. Tsai H-S, Wang Y, Liu C, Wang T, Huo M (2022) The elemental 2D materials beyond graphene potentially used as hazardous gas sensors for environmental protection. J Hazard Mater 423:127148

    Article  CAS  PubMed  Google Scholar 

  5. Serafini P, Milani A, Tommasini M, Castiglioni C, Proserpio DM, Bottani CE (2022) Casari CS : Vibrational properties of graphdiynes as 2D carbon materials beyond graphene. Phys Chem Chem Phys 24:10524–10536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lozovoy KA, Izhnin II, Kokhanenko AP, Dirko VV, Vinarskiy VP, Voitsekhovskii AV, Fitsych OI, Akimenko NY (2022) Single-element 2D materials beyond graphene: methods of epitaxial synthesis. Nanomaterials 12:2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jariwala D, Marks TJ, Hersam MC (2016) Mixed-dimensional van der Waals heterostructures. Nat Mater 16:170–181

    Article  PubMed  Google Scholar 

  8. Lew AJ, Buehler MJ (2021) A deep learning augmented genetic algorithm approach to polycrystalline 2D material fracture discovery and design. Appl Phys Rev 8:041414

    Article  CAS  Google Scholar 

  9. Jana S, Bandyopadhyay A, Datta S, Bhattacharya D, Jana D (2021) Emerging properties of carbon based 2D material beyond graphene. J Phys Condens Matter 3:053001

    Google Scholar 

  10. Barraza-Lopez S, Xia F, Zhu W, Wang H (2020) Beyond Graphene: Low-Symmetry and Anisotropic 2D Materials. J Appl Phys 128:40401

    Article  Google Scholar 

  11. Jiang L, Zhou D, Yang J, Zhou S, Wang H, Yuan X, Liang J, Li X, Chen Y, Li H (2022) 2D single- and few-layered MXenes: synthesis, applications and perspectives. J Mater Chem A 10:13651–13672

    Article  CAS  Google Scholar 

  12. Javed MS, Mateen A, Ali S et al (2022) The emergence of 2D MXenes based Zn-ion batteries: recent development and prospects. Small 18:2201989

    Article  CAS  Google Scholar 

  13. Saeed MA, Shahzad A, Rasool K et al (2022) 2D MXene: a potential candidate for photovoltaic cells? A critical review. Adv Sci 9:2104743

    Article  CAS  Google Scholar 

  14. Yang R, Fan J, Sun M (2022) Transition metal dichalcogenides (TMDCs) heterostructures: optoelectric properties. Front Phys 17:43202

    Article  Google Scholar 

  15. Singh AK, Kumar P, Late DJ et al (2018) 2D layered transition metal dichalcogenides (MoS2): synthesis, applications and theoretical aspects. Appl Mater Today 13:242–270

    Article  Google Scholar 

  16. Li S, Ma Y, Ouedraogo NAN et al (2021) p-/n-type modulation of 2D transition metal dichalcogenides for electronic and optoelectronic devices. Nano Res 15:123–144

    Article  Google Scholar 

  17. Jang J, Lee Y, Yoon J-Y et al (2018) One-dimensional assembly on two-dimensions: AuCN nanowire epitaxy on graphene for hybrid phototransistors. Nano Lett 18:6214–6221

    Article  CAS  PubMed  Google Scholar 

  18. Bowmaker GA, Kennedy BJ, Reid JC (1998) Crystal structures of AuCN and AgCN and vibrational spectroscopic studies of AuCN, AgCN, and CuCN. Inorg Chem 37:3968–3974

    Article  CAS  PubMed  Google Scholar 

  19. Hibble SJ, Wood GB, Bilbé EJ et al (2010) Structures and negative thermal expansion properties of the one-dimensional cyanides, CuCN, AgCN and AuCN. Z Kristallogr 225:457–462

    Article  CAS  Google Scholar 

  20. Velasco-Arias D, Mojica R, Zumeta-Dubé I et al (2021) New understanding on an old compound: insights on the origin of chain sequence defects and their impact on the electronic structure of AuCN. Eur J Inorg Chem 2021:3742–4375

    Article  CAS  Google Scholar 

  21. Hasnip PJ, Refson K, Probert MIJ et al (2014) Density functional theory in the solid state. Philos Trans R Soc A 372:20130270

    Article  Google Scholar 

  22. Clark SJ, Segall MD, Pickard CJ et al (2005) First principles methods using CASTEP. Kristallogr Cryst Mater 220:567–570

    Article  CAS  Google Scholar 

  23. Segall MD, Lindan PJD, Probert MJ et al (2002) First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Condens Matter 14:2717–2744

    Article  CAS  Google Scholar 

  24. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  25. Li X, Zhao W, Dong X (2021) A new CG algorithm based on a scaled memoryless BFGS update with adaptive search strategy, and its application to large-scale unconstrained optimization problems. J Comput Appl Math 398:113670

    Article  Google Scholar 

  26. Güler E, Güler M (2014) Phase transition and elasticity of gallium arsenide under pressure. Mater Res 17:1268–1272 (and references therein)

    Article  Google Scholar 

  27. Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41:7892–7895

    Article  CAS  Google Scholar 

  28. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  29. Madsen GKH, Carrete J, Verstraete MJ (2018) BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients. Comput Phys Commun 231:140–145

    Article  CAS  Google Scholar 

  30. Yelgel C, Yelgel ÖC, Gülseren O (2017) Structural and electronic properties of MoS2, WS2, and WS2/MoS2 heterostructures encapsulated with hexagonal boron nitride monolayers. J Appl Phys 122:065303

    Article  Google Scholar 

  31. Bradley RS, Munro DC, Spencer PN (1969) The effects of very high pressure on AuCN. Phys Stat Sol (b) 36:K51–K53

    Article  CAS  Google Scholar 

  32. Korabel’nikov DV, Fedorov IA, Zhuravlev YN (2021) Compressibility and electronic properties of metal cyanides. Phys Solid State 63:1021–1027

    Article  Google Scholar 

  33. Uğur Ş, Güler M, Uğur G, Güler E (2021) Elastic, mechanical, optical and magnetic properties of Ru2MnX (X = Nb, Ta, V) Heusler alloys. J Magn Magn Mater 523:167614

    Article  Google Scholar 

  34. Güler E, Güler M, Uğur Ş, Uğur G (2021) DFT aspects of the elastic, mechanical, magnetic, thermodynamic and optical properties of Ce3XY perovskites. Philos Mag 102:244–263

    Article  Google Scholar 

  35. Güler M, Uğur Ş, Uğur G, Güler E (2021) First principles study of the electronic, optical, elastic and thermoelectric properties of Nb2WNi alloy. Mol Phys 119:e19283

    Article  Google Scholar 

  36. Güler E, Uğur Ş, Güler M et al (2022) Revealing the electronic, optical, phonon and thermoelectrical characteristics of bulk and monolayered RbLiS and RbLiSe compounds by DFT. J Phys Chem Solids 170:110972

    Article  Google Scholar 

  37. Cassabois G, Valvin P, Gil B (2016) Hexagonal boron nitride is an indirect bandgap semiconductor. Nature Photon 10:262–266

    Article  CAS  Google Scholar 

  38. Gupta MK, Singh B, Mittal R et al (2016) Lattice dynamics and thermal expansion behavior in metal cyanides, MCN (M=Cu, Ag, Au): neutron inelastic scattering and first principles calculations. Phys Rev B 93:134307

    Article  Google Scholar 

  39. Zaleski-Ejgierd P, Hakala M, Pyykkö P (2007) Comparison of chain versus sheet crystal structures for the cyanides MCN (M=Cu–Au and dicarbides MC2 (M=Be–Ba, Zn–Hg). Phys Rev B 76:094104

    Article  Google Scholar 

  40. Chippindale AM, Hibble SJ, Bilbé EJ et al (2012) Mixed copper, silver, and gold cyanides, (MxM′1–x) CN: tailoring chain structures to influence physical properties. J Am Chem Soc 134:16387–16400

    Article  CAS  PubMed  Google Scholar 

  41. Jha PK, Soni HR (2014) Strain induced modification in phonon dispersion curves of monolayer boron pnictides. J Appl Phys 115:023509

    Article  Google Scholar 

  42. Xu Z, Li Y, Liu Z (2016) First-principles calculations of structural, electronic, and thermodynamic properties of monolayer Si1−xGexC sheet. RSC Adv 6:113903

    Article  CAS  Google Scholar 

  43. Choudhary K, Garrity KF, Reid ACE et al (2020) The joint automated repository for various integrated simulations (JARVIS) for data-driven materials design. NPJ Comput Mater 6:173

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

GU, MG, ŞU and EG have directly participated in the planning, execution and analysis of this study. EG drafted the manuscript. All authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to G. Uğur.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uğur, G., Güler, M., Uğur, Ş. et al. DFT exploration of the electronic, optical, phonon and thermoelectrical performances of bulk and monolayered AuCN. Theor Chem Acc 142, 20 (2023). https://doi.org/10.1007/s00214-023-02960-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-023-02960-7

Keywords

Navigation