Skip to main content
Log in

Effect of Au nanoparticles on the performance of hybrid solar cells

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Recently, organic/inorganic hybrid solar cells have been extensively studied as a means to fabricate low-cost, relatively high efficiency solar cell devices. Along this line of research, we report the observed enhancement in the power conversion efficiency of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) on planar silicon (Si) hybrid heterojunction solar cell devices when incorporating gold (Au) nanoclusters in the PEDOT:PSS blend. The Au nanoclusters of size 3–5 nm were synthesized by wet chemical methods, and capped with 4-mercaptobenzoic acid (p-MBA). The power conversion efficiency (PCE) of the described structures with Au nanoclusters was measured to be 8.2%, which compares well to the PCE value of 7.3% for similar devices without the nanoclusters. The increased PCE of the devices is attributed to the measured increased electrical conductivity as well as near field plasmonic effects of the aforementioned films due to the incorporation of the Au nanoclusters, which is directly reflected in the improved fill factor and external quantum efficiency of the devices produced.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213

    Article  Google Scholar 

  • Baek S-W, Noh J, Lee C-H, Kim B, Seo M-K, Lee J-Y (2013) Plasmonic forward scattering effect in organic solar cells: a powerful optical engineering method. Sci Rep. doi:10.1038/srep01726

    Google Scholar 

  • Cao Z, Chen Z, Escoubas L (2014) Optical, structural, and electrical properties of PEDOT:PSS thin films doped with silver nanoprisms. Opt Mater Express 4:2525–2534. doi:10.1364/OME.4.002525

    Article  Google Scholar 

  • Chen G, Seo J, Yang C, Prasad PN (2013a) Nanochemistry and nanomaterials for photovoltaics. Chem Soc Rev 42:8304–8338. doi:10.1039/C3CS60054H

    Article  Google Scholar 

  • Chen J-Y, Con C, Yu M-H, Cui B, Sun KW (2013b) Efficiency enhancement of PEDOT:PSS/Si hybrid solar cells by using nanostructured radial junction and antireflective surface. ACS Appl Mater Interfaces 5:7552–7558. doi:10.1021/am4018412

    Article  Google Scholar 

  • Chen J-Y, Yu M-H, Chang S-F, Wen Sun K (2013c) Highly efficient poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/Si hybrid solar cells with imprinted nanopyramid structures. Appl Phys Lett. doi:10.1063/1.4822116

    Google Scholar 

  • Chen X, Jia B, Zhang Y, Gu M (2013d) Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets. Light Sci Appl 2:e92. doi:10.1038/lsa.2013.48

    Article  Google Scholar 

  • Crispin X et al (2006) The origin of the high conductivity of poly (3, 4-ethylenedioxythiophene)-poly (styrenesulfonate) (PEDOT-PSS) plastic electrodes. Chem Mater 18:4354–4360

    Article  Google Scholar 

  • Cui Q et al (2013) Performance improvement in polymer/ZnO nanoarray hybrid solar cells by formation of ZnO/CdS-core/shell heterostructures. J Phys Chem C 117:5626–5637. doi:10.1021/jp312728t

    Article  Google Scholar 

  • Fang X, Song T, Liu R, Sun B (2014) Two-dimensional CoS nanosheets used for high-performance organic–inorganic hybrid solar cells. J Phys Chem C 118:20238–20245. doi:10.1021/jp506345a

    Article  Google Scholar 

  • He WW et al (2014) Towards stable silicon nanoarray hybrid solar cells. Sci Rep. doi:10.1038/srep03715

    Google Scholar 

  • Heo JH et al (2013) Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat Photon 7:486–491. doi:10.1038/nphoton.2013.80

    Article  Google Scholar 

  • Hong L, Wang X, Zheng H, He L, Wang H, Yu H, Rusli (2014) High efficiency silicon nanohole/organic heterojunction hybrid solar cell. Appl Phys Lett. doi:10.1063/1.4863965

  • Huang C-Y et al (2010) Efficient light harvesting by photon downconversion and light trapping in hybrid ZnS nanoparticles/Si nanotips solar cells. ACS Nano 4:5849–5854. doi:10.1021/nn101817s

    Article  Google Scholar 

  • Jeong S et al (2012) Hybrid silicon nanocone-polymer solar cells. Nano Lett 12:2971–2976. doi:10.1021/nl300713x

    Article  Google Scholar 

  • Jeong H, Song H, Pak Y, Kwon IK, Jo K, Lee H, Jung GY (2014) Enhanced light absorption of silicon nanotube arrays for organic/inorganic hybrid solar cells. Adv Mater 26:3445–3450. doi:10.1002/adma.201305394

    Article  Google Scholar 

  • Khatri I, Tang Z, Liu Q, Ishikawa R, Ueno K, Shirai H (2013) Green-tea modified multiwalled carbon nanotubes for efficient poly(3,4-ethylenedioxythiophene):poly(stylenesulfonate)/n-silicon hybrid solar cell. Appl Phys Lett. doi:10.1063/1.4792691

    Google Scholar 

  • Khatri I, Liu Q, Ueno K, Shirai H (2014) Improved performance of poly(3,4-ethylenedioxythiophene):poly(stylene sulfonate)/n-Si hybrid solar cell by incorporating silver nanoparticles. Jpn J Appl Phys 53:110305. doi:10.7567/jjap.53.110305

    Article  Google Scholar 

  • Lek JY, Xing G, Sum TC, Lam YM (2013) Electron transport limitation in P3HT:CdSe nanorods hybrid solar cells. ACS Appl Mater Interfaces 6:894–902. doi:10.1021/am4041515

    Article  Google Scholar 

  • Liu K, Qu S, Zhang X, Tan F, Wang Z (2013a) Improved photovoltaic performance of silicon nanowire/organic hybrid solar cells by incorporating silver nanoparticles. Nanoscale Res Lett 8:1–6. doi:10.1186/1556-276X-8-88

    Article  Google Scholar 

  • Liu M, Johnston MB, Snaith HJ (2013b) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501:395–398. doi:10.1038/nature12509

    Article  Google Scholar 

  • Liu R, Lee S-T, Sun B (2014) 13.8% Efficiency hybrid Si/organic heterojunction solar cells with MoO3 film as antireflection and inversion induced layer. Adv Mater 26:6007–6012. doi:10.1002/adma.201402076

    Article  Google Scholar 

  • Liu Z et al (2015) Extended short-wavelength spectral response of organic/(silver nanoparticles/Si nanoholes nanocomposite films) hybrid solar cells due to localized surface plasmon resonance. Appl Surf Sci. doi:10.1016/j.apsusc.2014.08.077

    Google Scholar 

  • Lu W, Wang C, Yue W, Chen L (2011) Si/PEDOT:PSS core/shell nanowire arrays for efficient hybrid solar cells. Nanoscale 3:3631–3634. doi:10.1039/C1NR10629E

    Article  Google Scholar 

  • Lu W, Chen Q, Wang B, Chen L (2012) Structure dependence in hybrid Si nanowire/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) solar cells: understanding photovoltaic conversion in nanowire radial junctions. Appl Phys Lett. doi:10.1063/1/3676041

    Google Scholar 

  • Mariani G et al (2010) Hybrid conjugated polymer solar cells using patterned GaAs nanopillars. Appl Phys Lett. doi:10.1063/1.3459961

    Google Scholar 

  • Oosterhout SD et al (2009) The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells. Nat Mater 8:818–824. doi:10.1038/nmat2533

    Article  Google Scholar 

  • Peng K-Q, Wang X, Li L, Wu X-L, Lee S-T (2010) High-performance silicon nanohole solar cells. J Am Chem Soc 132:6872–6873. doi:10.1021/ja910082y

    Article  Google Scholar 

  • Pudasaini PR, Ruiz-Zepeda F, Sharma M, Elam D, Ponce A, Ayon AA (2013) High efficiency hybrid silicon nanopillar-polymer solar cells. ACS Appl Mater Interfaces 5:9620–9627. doi:10.1021/am402598j

    Article  Google Scholar 

  • Pudasaini PR, Sharma M, Ruiz-Zepeda F, Ayon AA (2014) Efficiency improvement of a nanostructured polymer solar cell employing atomic layer deposited Al2O3 as a passivation layer. Microelectron Eng 119:6–10. doi:10.1016/j.mee.2014.01.015

    Article  Google Scholar 

  • Sato K, Dutta M, Fukata N (2014) Inorganic/organic hybrid solar cells: optimal carrier transport in vertically aligned silicon nanowire arrays. Nanoscale 6:6092–6101. doi:10.1039/C4NR00733F

    Article  Google Scholar 

  • Sharma M, Pudasaini PR, Ruiz-Zepeda F, Elam D, Ayon AA (2014a) Ultrathin, flexible organic–inorganic hybrid solar cells based on silicon nanowires and PEDOT:PSS. ACS Appl Mater Interfaces 6:4356–4363. doi:10.1021/am500063w

    Article  Google Scholar 

  • Sharma M, Pudasaini PR, Ruiz-Zepeda F, Vinogradova E, Ayon AA (2014b) Plasmonic effects of Au/Ag bimetallic multispiked nanoparticles for photovoltaic applications. ACS Appl Mater Interfaces 6:15472–15479. doi:10.1021/am5040939

    Article  Google Scholar 

  • Shen X, Sun B, Liu D, Lee S-T (2011) Hybrid heterojunction solar cell based on organic–inorganic silicon nanowire array architecture. J Am Chem Soc 133:19408–19415

    Article  Google Scholar 

  • Sheng J, Fan K, Wang D, Han C, Fang J, Gao P, Ye J (2014) Improvement of the SiO x passivation layer for high-efficiency Si/PEDOT:PSS heterojunction solar cells. ACS Appl Mater Interfaces 6:16027–16034. doi:10.1021/am503949g

    Article  Google Scholar 

  • Thiyagu S, Hsueh C-C, Liu C-T, Syu H-J, Lin T-C, Lin C-F (2014) Hybrid organic–inorganic heterojunction solar cells with 12% efficiency by utilizing flexible film-silicon with a hierarchical surface. Nanoscale 6:3361–3366. doi:10.1039/C3NR06323B

    Article  Google Scholar 

  • Wang J, Ye D-X, Liang G-H, Chang J, Kong J-L, Chen J-Y (2014) One-step synthesis of water-dispersible silicon nanoparticles and their use in fluorescence lifetime imaging of living cells. J Mater Chem B 2:4338–4345

    Article  Google Scholar 

  • Wong OA, Heinecke CL, Simone AR, Whetten RL, Ackerson CJ (2012) Ligand symmetry-equivalence on thiolate protected gold nanoclusters determined by NMR spectroscopy. Nanoscale 4:4099–4102

    Article  Google Scholar 

  • Xu T, Qiao Q (2011) Conjugated polymer-inorganic semiconductor hybrid solar cells. Energy Environ Sci 4:2700–2720. doi:10.1039/C0EE00632G

    Article  Google Scholar 

  • Yu P et al (2013) 13% Efficiency hybrid organic/silicon-nanowire heterojunction solar cell via interface engineering. ACS Nano 7:10780–10787. doi:10.1021/nn403982b

    Article  Google Scholar 

  • Zhang F, Han X, Lee S-T, Sun B (2012) Heterojunction with organic thin layer for three dimensional high performance hybrid solar cells. J Mater Chem 22:5362–5368. doi:10.1039/C2JM15674A

    Article  Google Scholar 

  • Zhang F, Liu D, Zhang Y, Wei H, Song T, Sun B (2013) Methyl/allyl monolayer on silicon: efficient surface passivation for silicon-conjugated polymer hybrid solar cell. ACS Appl Mater Interfaces 5:4678–4684. doi:10.1021/am302893r

    Article  Google Scholar 

Download references

Acknowledgements

We thank the U.S. Army Research Office, for the financial support provided for this project (ARO Grant number W911NF-13-1-0110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo A. Ayon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, M., Lopez-Delgado, R. & Ayon, A.A. Effect of Au nanoparticles on the performance of hybrid solar cells. Microsyst Technol 24, 543–550 (2018). https://doi.org/10.1007/s00542-017-3510-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-017-3510-x

Navigation