Skip to main content
Log in

Relativistic coupled-cluster study of SrF for low-energy precision tests of fundamental physics

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

SrF, being a laser-coolable molecule, can be an interesting system for spectroscopic tests of fundamental physics. We present an electronic structure study of this molecule within the four-component relativistic coupled-cluster singles and doubles (RCCSD) framework and employ the RCCSD-based methods to compute its molecular-frame dipole moment and core properties such as hyperfine structure coupling constant and molecular PT-odd electronic structure parameters that are of great importance for the high-precision tests of fundamental physics. The impact of basis set size, Hamiltonian and nuclear model on the property calculation of SrF is also investigated. The computed results are in good agreement with the available experimental values. The present study shows that the SrF molecule could be useful for high-precision molecular experiments to explore physics beyond the Standard Model of elementary particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sushkov OP, Flambaum VV, Khriplovich IB (1984) Sov Phys JETP 60:873

    Google Scholar 

  2. Dmitriev VF, Khriplovich IB, Telitsin VB (1994) Phys Rev C 50:2358

    Article  CAS  Google Scholar 

  3. Kozlov MG, Labzowsky LN (1995) J Phys B: At Mol Opt Phys 28:1933

    Article  CAS  Google Scholar 

  4. Regan BC, Commins ED, Schmidt CJ, DeMille D (2002) Phys Rev Lett 88:071805

    Article  CAS  PubMed  Google Scholar 

  5. Hudson J et al (2011) Nature 473:493

    Article  CAS  PubMed  Google Scholar 

  6. Baron J et al (2014) Science 343:269

    Article  CAS  PubMed  Google Scholar 

  7. Andreev V et al (2018) Nature 562:355

    Article  CAS  Google Scholar 

  8. Stutz R, Cornell E (2004) Bull Am Soc Phys 89:76

    Google Scholar 

  9. Harrison G, Sandars P, Wright S (1969) Phys Rev Lett 22:1263

    Article  CAS  Google Scholar 

  10. Hinds EA, Sandars P (1980) Phys Rev A 21:480

    Article  CAS  Google Scholar 

  11. Kara DM et al (2012) New J Phys 14:103051

    Article  Google Scholar 

  12. Cairncross WB et al (2017) Phys Rev Lett 119:153001

    Article  PubMed  Google Scholar 

  13. Garcia Ruiz RF et al (2020) Nature 581:396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Aggarwal P et al (2018) Eur Phys J D 72:1

    Article  Google Scholar 

  15. Kozyryev I, Hutzler NR (2017) Phys Rev Lett 119:133002

    Article  PubMed  Google Scholar 

  16. Sandars PGH (1967) Phys Rev Lett 19:1396

    Article  CAS  Google Scholar 

  17. Bernreuther W, Suzuki M (1991) Rev Mod Phys 63:313

    Article  CAS  Google Scholar 

  18. Skripnikov LV, Petrov AN, Titov AV (2013) J Chem Phys 139:221103

    Article  CAS  PubMed  Google Scholar 

  19. Pospelov M, Ritz A (2005) Ann Phys 318:119

    Article  CAS  Google Scholar 

  20. Engel J, Ramsey-Musolf MJ, van Kolck U (2013) Prog Part Nucl Phys 71:21

    Article  CAS  Google Scholar 

  21. Gaul KJ, Berger R (2020) Theory of molecular tests of fundamental physics, Philipps-Universitaet Marburg. https://doi.org/10.17192/z2021.0109

  22. Gaul K, Marquardt S, Isaev T, Berger R (2019) Phys Rev A 99:032509

    Article  CAS  Google Scholar 

  23. Sasmal S, Pathak H, Nayak MK, Vaval N, Pal S (2016) Phys Rev A 93:062506

    Article  Google Scholar 

  24. Kudashov AD, Petrov AN, Skripnikov LV, Mosyagin NS, Isaev TA, Berger R, Titov AV (2014) Phys Rev A 90:052513

    Article  Google Scholar 

  25. Sasmal S, Pathak H, Nayak MK, Vaval N, Pal S (2016) J Chem Phys 144:124307

    Article  PubMed  Google Scholar 

  26. Talukdar K, Nayak MK, Vaval N, Pal S (2020) J Phys B: At Mol Opt Phys 53:135102

    Article  CAS  Google Scholar 

  27. Sasmal S, Pathak H, Nayak MK, Vaval N, Pal S (2015) J Chem Phys 143:084119

    Article  PubMed  Google Scholar 

  28. Sasmal S, Talukdar K, Nayak MK, Vaval N, Pal S (2017) Mol Phys 115:2807

    Article  CAS  Google Scholar 

  29. Talukdar K, Nayak MK, Vaval N, Pal S (2020) J Chem Phys 153:184306

    Article  CAS  PubMed  Google Scholar 

  30. Talukdar K, Nayak MK, Vaval N, Pal S (2019) Phys Rev A 99:032503

    Article  CAS  Google Scholar 

  31. Talukdar K, Nayak MK, Vaval N, Pal S (2019) J Chem Phys 150:084304

    Article  PubMed  Google Scholar 

  32. Talukdar K, Nayak MK, Vaval N, Pal S (2020) Phys Rev A 101:032505

    Article  CAS  Google Scholar 

  33. Fleig T, Nayak MK, Kozlov MG (2016) Phys Rev A 93:012505

    Article  Google Scholar 

  34. Skripnikov LV, Titov AV, Flambaum VV (2017) Phys Rev A 95:022512

    Article  Google Scholar 

  35. Skripnikov LV, Petrov AN, Titov AV, Flambaum VV (2014) Phys Rev Lett 113:263006

    Article  CAS  PubMed  Google Scholar 

  36. Mitra D, Leung KH, Zelevinsky T (2022) Phys Rev A 105:040101

    Article  CAS  Google Scholar 

  37. van den Berg JE et al (2014) J Mol Spectrosc 300:22

    Article  Google Scholar 

  38. Aggarwal P et al (NL-eEDM Collaboration) (2021) Phys Rev Lett 127:173201

  39. Fitch NJ, Tarbutt MR (2021) Adv At Mol Opt Phys 70:157

    Article  Google Scholar 

  40. Shuman ES, Barry SF, DeMille D (2010) Nature 467:820

    Article  CAS  PubMed  Google Scholar 

  41. Sunaga A, Prasannaa VS, Abe M, Hada M, Das BP (2018) Phys Rev A 98:042511

    Article  CAS  Google Scholar 

  42. Abe M, Prasannaa VS, Das BP (2018) Phys Rev A 97:032515

    Article  CAS  Google Scholar 

  43. Handy NC, Schaefer HF (1984) J Chem Phys 81:5031

    Article  CAS  Google Scholar 

  44. Salter EA, Trucks GW, Bartlett RJ (1989) J Chem Phys 90:1752

    Article  Google Scholar 

  45. Koch H, Jensen JA, Jorgensen P, Helgaker T, Scuseria GE, Schaefer HF III (1990) J Chem Phys 92:4924

    Article  CAS  Google Scholar 

  46. Sasmal S, Pathak H, Nayak MK, Vaval N, Pal S (2015) Phys Rev A 91:030503

    Article  Google Scholar 

  47. Talukdar K, Sasmal S, Nayak MK, Vaval N, Pal S (2018) Phys Rev A 98:022507

    Article  CAS  Google Scholar 

  48. Sasmal S, Talukdar K, Nayak MK, Vaval N, Pal S (2016) J Chem Sci 128:1671

    Article  CAS  Google Scholar 

  49. Haldar S, Talukdar K, Nayak MK, Pal S (2021) Int J Quantum Chem 121:e26764

    Article  CAS  Google Scholar 

  50. Sasmal S (2017) Phys Rev A 96:012510

    Article  Google Scholar 

  51. Cizek J (1967) Advances in chemical physics: correlation effects in atoms and molecules. Wiley Hoboken, NJ

    Google Scholar 

  52. Pal S, Durga Prasad M, Mukherjee D (1983) Theor Chim Acta 62:523

    Article  CAS  Google Scholar 

  53. Kozlov MG, Fomichev V, Dmitriev YY, Labzovsky LN, Titov AV (1987) J Phys B: At Mol Opt Phys 20:4939

    Article  CAS  Google Scholar 

  54. Titov AV, Mosyagin NS, Petrov AN, Isaev TA, DeMille DP (2006) Prog Theor Chem Phys 15:253

    Article  CAS  Google Scholar 

  55. Hunter LR (1991) Science 252:73

    Article  CAS  PubMed  Google Scholar 

  56. Saue T et al (2010) DIRAC, a relativistic ab initio electronic structure program. (see http://www.diracprogram.org)

  57. Saue T et al (2020) J Chem Phys 152:204104

    Article  CAS  PubMed  Google Scholar 

  58. Visscher L, Dyall K (1997) Atomic Data Nucl Data Tables 67:207

    Article  CAS  Google Scholar 

  59. Dyall KG (2004) Theor Chem Acc 112:403

    Article  CAS  Google Scholar 

  60. Dunning TH Jr (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  61. Faegri K Jr, Dyall KG (2007) Introduction to relativistic quantum chemistry. Oxford University Press, USA

    Google Scholar 

  62. Sucher J (1980) Phys Rev A 22:348

    Article  CAS  Google Scholar 

  63. Almoukhalalati A, Knecht S, Jensen HJA, Dyall KG, Saue T (2016) J Chem Phys 145:074104

    Article  PubMed  Google Scholar 

  64. Huber KP, Herzberg G (1979) Molecular spectra and molecular structure, IV. constants of diatomic molecules. Van Nostrand Reinhold, New York

    Book  Google Scholar 

  65. Ernst WE, Kandler J, Kindt S, Torring T (1985) Chem Phys Lett 113:351

    Article  CAS  Google Scholar 

  66. Knight LB Jr, Easley WC, Weltner W Jr, Wilson M (1971) J Chem Phys 54:322

    Article  CAS  Google Scholar 

  67. Weltner W (1983) Magnetic atoms and molecules. Dover Publications Inc., New York

    Google Scholar 

  68. Kutzelnigg W, Liu W (2005) J Chem Phys 123:241102

    Article  PubMed  Google Scholar 

  69. Liu W, Peng D (2009) J Chem Phys 131:031104

    Article  PubMed  Google Scholar 

  70. Iliaš M, Saue T (2007) J Chem Phys 126:064102

    Article  PubMed  Google Scholar 

  71. Schimmelpfennig B (1996) AMFI, an atomic mean-field spin-orbit integral program. Stockholm, Sweden

    Google Scholar 

Download references

Acknowledgments

K.T. acknowledges the Department of Science and Technology (DST), India for the INSPIRE Faculty Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kaushik Talukdar or Sourav Pal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talukdar, K., Buragohain, H., Nayak, M.K. et al. Relativistic coupled-cluster study of SrF for low-energy precision tests of fundamental physics. Theor Chem Acc 142, 15 (2023). https://doi.org/10.1007/s00214-023-02953-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-023-02953-6

Keywords

Navigation