Skip to main content
Log in

The fluorescence mechanism of a probe based on benzothiazole group to detect HClO

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The hypochlorite (hypochlorite acid) produced in biological chlorine ions can resist various pathogens in the innate immune system, so it is important to design and detect the concentration of hypochlorite acid in the biological system. 2-(Benzo[d]thiazol-2-yl)-4- (methylthio) phenol (BTMSP), a fluorescent probe with large Stokes shifts, has been proposed a ESIPT-ICT dual mechanism in the experiment. But after the reaction, a new compound, BTMTP, does not have excited state intramolecular proton transfer (ESIPT) and intramolecular charge transfer (ICT) characters. In order to study the mechanism of the fluorescence probe BTMSP in detail, we have performed density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculation. By computing, in the ground state, the BTMSP has the ICT process, and the BTMTP molecules are able to undergo intramolecular proton transfer reactions. The frontier molecular orbital (FMO) calculations show that the BTMSP has a large Stokes shift by ICT reaction and ESIPT coupling leading to the fluorescence emission red-shift. Although BTMTP does not have ICT character, it can undergo ESIPT reaction, causing Stokes shift decreasing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang X, Nakamoto T, Dulińska-Molak I, Kawazoe N, Chen G (2016) Regulating the stemness of mesenchymal stem cells by tuning micropattern features. J Mater Chem B 4:37–45. https://doi.org/10.1039/C5TB02215K

    Article  CAS  PubMed  Google Scholar 

  2. Yang Y-K, Cho HJ, Lee J, Shin I, Tae J (2009) A Rhodamine−hydroxamic acid-based fluorescent probe for hypochlorous acid and its applications to biological imagings. Org Lett 11:859–861. https://doi.org/10.1021/ol802822t

    Article  CAS  PubMed  Google Scholar 

  3. Chen X, Wang F, Hyun JY, Wei T, Qiang J, Ren X, Shin I, Yoon J (2016) Recent progress in the development of fluorescent, luminescent and colorimetric probes for detection of reactive oxygen and nitrogen species. Chem Soc Rev 45:2976–3016. https://doi.org/10.1039/C6CS00192K

    Article  CAS  PubMed  Google Scholar 

  4. Dong H, Zhou Y, Zhao L, Hao Y, Zhang Y, Ye B, Xu M (2020) Dual-response ratiometric electrochemical microsensor for effective simultaneous monitoring of hypochlorous acid and ascorbic acid in human body fluids. Anal Chem 92:15079–15086. https://doi.org/10.1021/acs.analchem.0c03089

    Article  CAS  PubMed  Google Scholar 

  5. Adam LC, Gordon G (1995) Direct and sequential potentiometric determination of hypochlorite, chlorite, and chlorate ions when hypochlorite ion is present in large excess. Anal. Chem. 67:535–540. https://doi.org/10.1021/ac00099a009

    Article  CAS  Google Scholar 

  6. Thiagarajan S, Wu Z-Y, Chen S-M (2011) Amperometric determination of sodium hypochlorite at poly MnTAPP-nano Au film modified electrode. J Electroanal Chem 661:322–328. https://doi.org/10.1016/j.jelechem.2011.08.009

    Article  CAS  Google Scholar 

  7. Pan S, Deen MJ, Ghosh R (2015) Low-cost graphite-based free chlorine sensor. Anal Chem 87:10734–10737. https://doi.org/10.1021/acs.analchem.5b03164

    Article  CAS  PubMed  Google Scholar 

  8. Wang W, Zhang L, Li L, Tian Y (2016) A single nanoprobe for ratiometric imaging and biosensing of hypochlorite and glutathione in live cells using surface-enhanced Raman scattering. Anal Chem 88:9518–9523. https://doi.org/10.1021/acs.analchem.6b02081

    Article  CAS  PubMed  Google Scholar 

  9. Zhou Y, Li J-Y, Chu K-H, Liu K, Yao C, Li J-Y (2012) Fluorescence turn-on detection of hypochlorous acid via HOCl-promoted dihydrofluorescein-ether oxidation and its application in vivo. Chem Commun 48:4677. https://doi.org/10.1039/c2cc30265a

    Article  CAS  Google Scholar 

  10. Zhang D (2010) Highly selective and sensitive colorimetric probes for hypochlorite anion based on azo derivatives. Spectrochim Acta Part A Mol Biomol Spectrosc 77:397–401. https://doi.org/10.1016/j.saa.2010.05.028

    Article  CAS  Google Scholar 

  11. Wu G, Zeng F, Wu S (2013) A water-soluble and specific BODIPY-based fluorescent probe for hypochlorite detection and cell imaging. Anal Methods 5:5589. https://doi.org/10.1039/c3ay41268g

    Article  CAS  Google Scholar 

  12. Lu L, Zhang J, Yang X (2013) Simple and selective colorimetric detection of hypochlorite based on anti-aggregation of gold nanoparticles. Sens Actuators, B Chem 184:189–195. https://doi.org/10.1016/j.snb.2013.04.073

    Article  CAS  Google Scholar 

  13. Wu L, Wu I-C, DuFort CC, Carlson MA, Wu X, Chen L, Kuo C-T, Qin Y, Yu J, Hingorani SR, Chiu DT (2017) Photostable ratiometric pdot probe for in vitro and in vivo imaging of hypochlorous acid. J Am Chem Soc 139:6911–6918. https://doi.org/10.1021/jacs.7b01545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen L, Park SJ, Wu D, Kim HM, Yoon J (2018) A two-photon ESIPT based fluorescence probe for specific detection of hypochlorite. Dyes Pigm 158:526–532. https://doi.org/10.1016/j.dyepig.2018.01.027

    Article  CAS  Google Scholar 

  15. Cerón MR, Izquierdo M, Alegret N, Valdez JA, Rodríguez-Fortea A, Olmstead MM, Balch AL, Poblet JM, Echegoyen L (2016) Reactivity differences of Sc3 N@C2n (2n = 68 and 80). Synthesis of the first methanofullerene derivatives of Sc3 N@D5h -C80. Chem. Commun. 52:64–67. https://doi.org/10.1039/C5CC07416A

    Article  CAS  Google Scholar 

  16. Ren H, Huo F, Yin C (2021) An ESIPT-based colorimetric and fluorescent probe with large Stokes shift for the sensitive detection of hypochlorous acid and its bioimaging in cells. New J Chem 45:4724–4728. https://doi.org/10.1039/D0NJ05807F

    Article  CAS  Google Scholar 

  17. Zhong X, Yang Q, Chen Y, Jiang Y, Wang B, Shen J (2019) A mitochondria-targeted fluorescent probe based on coumarin–pyridine derivatives for hypochlorite imaging in living cells and zebrafish. J Mater Chem B 7:7332–7337. https://doi.org/10.1039/C9TB01948K

    Article  CAS  PubMed  Google Scholar 

  18. Pan Y, Huang J, Han Y (2017) A new ESIPT-based fluorescent probe for highly selective and sensitive detection of HClO in aqueous solution. Tetrahedron Letters. 58:1301–1304. https://doi.org/10.1016/j.tetlet.2017.02.043

    Article  CAS  Google Scholar 

  19. Jiang G, Tang Z, Han H, Ding J, Zhou P (2021) Effects of intermolecular hydrogen bonding and solvation on enol-keto tautomerism and photophysics of azomethine–BODIPY dyads. J Phys Chem B 125:9296–9303. https://doi.org/10.1021/acs.jpcb.1c04776

    Article  CAS  PubMed  Google Scholar 

  20. Zhao J, Ji S, Chen Y, Guo H, Yang P (2012) Excited state intramolecular proton transfer (ESIPT): from principal photophysics to the development of new chromophores and applications in fluorescent molecular probes and luminescent materials. Phys Chem Chem Phys 14:8803–8817. https://doi.org/10.1039/C2CP23144A

    Article  CAS  PubMed  Google Scholar 

  21. Iijima T, Momotake A, Shinohara Y, Sato T, Nishimura Y, Arai T (2010) Excited-state intramolecular proton transfer of naphthalene-fused 2-(2′-Hydroxyaryl)benzazole family. J Phys Chem A 114:1603–1609. https://doi.org/10.1021/jp904370t

    Article  CAS  PubMed  Google Scholar 

  22. Liu B, Wang H, Wang T, Bao Y, Du F, Tian J, Li Q, Bai R (2012) A new ratiometric ESIPT sensor for detection of palladium species in aqueous solution. Chem Commun 48:2867. https://doi.org/10.1039/c2cc17677g

    Article  CAS  Google Scholar 

  23. Murale DP, Kim H, Choi WS, Churchill DG (2013) Highly selective excited state intramolecular proton transfer (ESIPT)-based superoxide probing. Org Lett 15:3946–3949. https://doi.org/10.1021/ol4017222

    Article  CAS  PubMed  Google Scholar 

  24. Tang Z, Zhou P (2020) New insights into the excited state dynamics of quinoline-pyrazole isomerism. J Phys Chem B 124:3400–3407. https://doi.org/10.1021/acs.jpcb.0c01624

    Article  CAS  PubMed  Google Scholar 

  25. Tang Z, Wang Y, Bao D, Lv M, Yang Y, Tian J, Dong L (2017) Theoretical investigation of an excited-state intramolecular proton-transfer mechanism for an asymmetric structure of 3,7-dihydroxy-4-oxo-2-phenyl-4 H -chromene-8-carbaldehyde: single or double? J Phys Chem A 121:8807–8814. https://doi.org/10.1021/acs.jpca.7b08266

    Article  CAS  PubMed  Google Scholar 

  26. Gao M, Yu F, Lv C, Choo J, Chen L (2017) Fluorescent chemical probes for accurate tumor diagnosis and targeting therapy. Chem Soc Rev 46:2237–2271. https://doi.org/10.1039/C6CS00908E

    Article  CAS  PubMed  Google Scholar 

  27. Sinkeldam RW, Greco NJ, Tor Y (2010) Fluorescent analogs of biomolecular building blocks: design, properties, and applications. Chem Rev 110:2579–2619. https://doi.org/10.1021/cr900301e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Catalán J, Valle JCD, Fabero F, Garcia NA (1995) THE influence of molecular conformation on the stability of ultraviolet stabilizers toward direct and dye-sensitized photoirradiation: the case of 2-(2’-Hydroxy-5’-Methyphenyl)Benzotriazole (TIN P). Photochem Photobiol 61:118–123. https://doi.org/10.1111/j.1751-1097.1995.tb03949.x

    Article  Google Scholar 

  29. Chou P-T, Martinez ML, Studer SL (1991) The design of an effective “Fluorescence Filter” for Raman spectroscopy. Appl Spectrosc 45:918–921. https://doi.org/10.1366/0003702914336589

    Article  CAS  Google Scholar 

  30. Lou Z, Li P, Han K (2015) Redox-responsive fluorescent probes with different design strategies. Acc Chem Res 48:1358–1368. https://doi.org/10.1021/acs.accounts.5b00009

    Article  CAS  PubMed  Google Scholar 

  31. Cui Y, Li P, Wang J, Song P, Xia L (2015) An investigation of excited-state intramolecular proton transfer mechanism of new chromophore. JAMS. 6:23–33. https://doi.org/10.4208/jams.100314.010115a

    Article  Google Scholar 

  32. Lim S-J, Seo J, Park SY (2006) Photochromic switching of excited-state intramolecular proton-transfer (ESIPT) fluorescence: a unique route to high-contrast memory switching and nondestructive readout. J Am Chem Soc 128:14542–14547. https://doi.org/10.1021/ja0637604

    Article  CAS  PubMed  Google Scholar 

  33. Tang K-C, Chang M-J, Lin T-Y, Pan H-A, Fang T-C, Chen K-Y, Hung W-Y, Hsu Y-H, Chou P-T (2011) Fine tuning the energetics of excited-state intramolecular proton transfer (ESIPT): white light generation in a single ESIPT system. J Am Chem Soc 133:17738–17745. https://doi.org/10.1021/ja2062693

    Article  CAS  PubMed  Google Scholar 

  34. Kwon JE, Park SY (2011) Advanced organic optoelectronic materials: harnessing excited-state intramolecular proton transfer (ESIPT) process. Adv Mater 23:3615–3642. https://doi.org/10.1002/adma.201102046

    Article  CAS  PubMed  Google Scholar 

  35. Hsieh C-C, Jiang C-M, Chou P-T (2010) Recent experimental advances on excited-state intramolecular proton coupled electron transfer reaction. Acc Chem Res 43:1364–1374. https://doi.org/10.1021/ar1000499

    Article  CAS  PubMed  Google Scholar 

  36. Liu Y-H, Lan S-C, Zhu C, Lin S-H (2015) Intersystem crossing pathway in quinoline-pyrazole isomerism: a time-dependent density functional theory study on excited-state intramolecular proton transfer. J Phys Chem A 119:6269–6274. https://doi.org/10.1021/acs.jpca.5b03557

    Article  CAS  PubMed  Google Scholar 

  37. Shen Y, Liu X, Zhang X, Zhang Y, Gu B (2020) Employing an ICT-ESIPT strategy for ratiometric tracking of HClO based on sulfide oxidation reaction. Spectrochim Acta Part A Mol Biomol Spectrosc 239:118515. https://doi.org/10.1016/j.saa.2020.118515

    Article  CAS  Google Scholar 

  38. Feller D (1996) The role of databases in support of computational chemistry calculations. J Comput Chem 17:1571–1586. https://doi.org/10.1002/(SICI)1096-987X(199610)17:13%3c1571::AID-JCC9%3e3.0.CO;2-P

    Article  CAS  Google Scholar 

  39. Tang Z, Bai T, Zhou P (2020) Sensing mechanism of a fluorescent probe for cysteine: photoinduced electron transfer and invalidity of excited-state intramolecular proton transfer. J Phys Chem A 124:6920–6927. https://doi.org/10.1021/acs.jpca.0c06171

    Article  CAS  PubMed  Google Scholar 

  40. Schäfer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J Chem Phys 97:2571–2577. https://doi.org/10.1063/1.463096

    Article  Google Scholar 

  41. Cancès E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107:3032–3041. https://doi.org/10.1063/1.474659

    Article  Google Scholar 

  42. Cammi R, Tomasi J (1995) Remarks on the use of the apparent surface charges (ASC) methods in solvation problems: Iterative versus matrix-inversion procedures and the renormalization of the apparent charges. J Comput Chem 16:1449–1458. https://doi.org/10.1002/jcc.540161202

    Article  CAS  Google Scholar 

  43. Zhan H, Wang Y, Li Z, Tang Z, Tian J, Fei X (2021) Investigating the influence of electronic effects of functional groups on the fluorescence mechanism of probes in water samples. J Phys Chem A 125:2866–2875. https://doi.org/10.1021/acs.jpca.1c00108

    Article  CAS  PubMed  Google Scholar 

  44. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, . Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ, Gaussian 16 Rev. C.01, Wallingford, CT, 2016.

  45. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506. https://doi.org/10.1021/ja100936w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lu T, Chen F (2012) Multiwfn: A multifunctional wavefunction analyzer. J Comput Chem 33:580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  47. Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graph 14:33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

  48. Tang W, Sanville E, Henkelman G (2009) A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter. 21:084204. https://doi.org/10.1088/0953-8984/21/8/084204

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Basis Research Project of Department of Education of Liaoning Province (Grant J2019020), the Open Project of SKLMRD (the open fund of the state key laboratory of molecular reaction dynamics in DICP, CAS) and the General Program from Education department of Liaoning Province (Grant LJKZ0534).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 237 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, M., Zhang, P., Tang, Z. et al. The fluorescence mechanism of a probe based on benzothiazole group to detect HClO. Theor Chem Acc 141, 57 (2022). https://doi.org/10.1007/s00214-022-02919-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-022-02919-0

Keywords

Navigation