Skip to main content
Log in

The sensing mechanism of fluorescent probe for PhSH and the process of ESIPT

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The detection mechanism of fluorescent probe FQ-DNP (DNP: 2,4-dinitropheno) for PhSH and the detailed ESIPT process of its product 2-(6-(diethylamino) quinolin-2-yl)-3–Hydroxy-4H-chromen-4-one (FQ-OH) have been revealed by density functional theory (DFT) and time-dependent density functional theory (TD-DFT). For FQ-OH, the decreased bond length of H6–N7 and RDG analysis illustrate that the strength of hydrogen bond H6–N7 has been enlarged after photoexcitation, creating a good condition for ESIPT. To illustrate the ESIPT process in detail, the potential energy curves are performed and the transition state reaction energy is calculated. In the S0 state, the FQ-OH could happen proton transfer (PT) to form keto, but the keto form is more unstable than enol form. After photoexcitation, in the S1 state, FQ-OH could happen PT to produce stable keto form. Excited dynamic simulation shows that PT happens at 71.5 fs. The calculated absorption and emission spectra are in agreement with the experimental data, and the calculated Stokes shift is 160 nm. Frontier molecular orbitals (FMOs) and hole–electron analysis show that twisted intramolecular charge transfer (TICT) is responsible for the fluorescent quenching of FQ-DNP.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Benita Sherine, H., & Rajendran, S. (2011). Corrosion inhibition of carbon steel in ground water by thiophenol-Zn2+ system. Arabian Journal for Science and Engineering, 36(4), 517–528. https://doi.org/10.1007/s13369-011-0067-3

    Article  CAS  Google Scholar 

  2. Lai, Y., Gao, Y., Yao, X., Zhang, C., Wen, L., & Jin, Y. (2021). Inhibition and adsorption behavior of thiophenol derivatives on copper corrosion in saline medium. Journal of Adhesion Science and Technology. https://doi.org/10.1080/01694243.2021.1946306

    Article  Google Scholar 

  3. Wu, J., Sun, X., Sun, W., & Ye, S. (2006). Unexpected highly efficient ring-opening of aziridines or epoxides with iodine promoted by thiophenol. Synlett, 2006(15), 2489–2491.

    Article  Google Scholar 

  4. Nemati, F., & Amoozadeh, A. (2016). The role of thiophenol in the proposed mechanism for one pot transformation of 2-phenylthio-3-aminocyclohexanols to dehydropiperidine derivatives. Arabian Journal of Chemistry, 9, S1005–S1009. https://doi.org/10.1016/j.arabjc.2011.10.014

    Article  CAS  Google Scholar 

  5. Ioannou, P. V., Afroudakis, P. A., & Siskos, M. G. (2002). Preparation of 2-picolylarsonic acid and its reductive cleavage by ascorbic acid/iodine and by thiophenol. Phosphorus Sulfur and Silicon and the Related Elements, 177(12), 2773–2783. https://doi.org/10.1080/10426500214875

    Article  CAS  Google Scholar 

  6. Xia, Z., Lv, X., Wang, W., & Wang, X. (2011). Regioselective addition of thiophenol to alpha, beta-unsaturated N-acylbenzotriazoles. Tetrahedron Letters, 52(38), 4906–4910. https://doi.org/10.1016/j.tetlet.2011.07.057

    Article  CAS  Google Scholar 

  7. Fairchild, E. J., & Stokinger, H. E. (1958). Toxicologic studies on organic sulfur compounds. I. acute toxicity of some aliphatic and aromatic thiols (mercaptans). American Industrial Hygiene Association Journal, 19(3), 171–189. https://doi.org/10.1080/00028895809343573

    Article  CAS  PubMed  Google Scholar 

  8. Heil, T. P., & Lindsay, R. C. (1988). Volatile compounds in flavor-tainted fish from the upper Wisconsin river. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes, 23(5), 489–512. https://doi.org/10.1080/03601238809372621

    Article  CAS  PubMed  Google Scholar 

  9. Wang, T., Chamberlain, E., Shi, H., Adams, C. D., & Ma, Y. (2010). Identification of hydrolytic metabolites of dyfonate in alkaline aqueous solutions by using high performance liquid chromatography - UV detection and gas chromatography-mass spectrometry. International Journal of Environmental Analytical Chemistry, 90(12), 948–961. https://doi.org/10.1080/03067310902874889

    Article  CAS  Google Scholar 

  10. Qiao, J.-Q., Bao, Y.-C., Yang, J. –H., Jiang, Q., & Lian, H.-Z. (2010). Identification and quantification of related impurities in 2-chloroethyl phenyl sulfide for industrial use. Industrial and Engineering Chemistry Research, 49(2), 443–447. https://doi.org/10.1021/ie9014167

    Article  CAS  Google Scholar 

  11. Heil, T. P., & Lindsay, R. C. (1988). A method for quantitative analysis of flavor-tainting alkylphenols and aromatic thiols in fish. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes, 23(5), 475–488. https://doi.org/10.1080/03601238809372620

    Article  CAS  PubMed  Google Scholar 

  12. Wu, Q., Feng, L., Chao, J. B., Wang, Y., & Shuang, S. (2021). Ratiometric sensing of Zn2+ with a new benzothiazole-based fluorescent sensor and living cell imaging. The Analyst, 146(13), 4348–4356. https://doi.org/10.1039/D1AN00749A

    Article  CAS  PubMed  Google Scholar 

  13. Yang, Y. Z., Xu, Z. Y., Li, N. B., & Luo, H. Q. (2021). Ultrasensitive fluorescent probe for visual biosensing of esterase activity in living cells and its imaging application. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 262, 120094. https://doi.org/10.1016/j.saa.2021.120094

    Article  CAS  PubMed  Google Scholar 

  14. Hu, S., Wang, J., Luo, M., Wu, Z., Hou, Y., & Chen, X. (2021). A novel ESIPT fluorescent probe derived from 3–Hydroxyphthalimide for hydrazine detection in aqueous solution and living cells. Analytical and Bioanalytical Chemistry, 413, 5463–5468. https://doi.org/10.1007/s00216-021-03530-1

    Article  CAS  PubMed  Google Scholar 

  15. Fu, Y., & Finney, N. S. (2018). Small-molecule fluorescent probes and their design. RSC Advances, 8(51), 29051–29061. https://doi.org/10.1039/C8RA02297F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhou, P., & Han, K. (2018). Unraveling the detailed mechanism of excited-state proton transfer. Accounts of Chemical Research, 51(7), 1681–1690. https://doi.org/10.1021/acs.accounts.8b00172

    Article  CAS  PubMed  Google Scholar 

  17. Li, P., Duan, X., Chen, Z., Liu, Y., Xie, T., Fang, L., Li, X., Yin, M., & Tang, B. (2011). A near-infrared fluorescent probe for detecting copper(II) with high selectivity and sensitivity and its biological imaging applications. Chemical Communications, 47(27), 7755–7757. https://doi.org/10.1039/C1CC11885D

    Article  CAS  PubMed  Google Scholar 

  18. Zhu, H., Fan, J., Wang, J., Mu, H., & Peng, X. (2014). An “enhanced PET”-based fluorescent probe with ultrasensitivity for imaging basal and elesclomol-induced HClO in cancer cells. Journal of the American Chemical Society, 136(37), 12820–12823. https://doi.org/10.1021/ja505988g

    Article  CAS  PubMed  Google Scholar 

  19. Li, X., Zhang, S., Cao, J., Xie, N., Liu, T., Yang, B., He, Q., & Hu, Y. (2013). An ICT-based fluorescent switch-on probe for hydrogen sulfide in living cells. Chemical Communications, 49(77), 8656–8658. https://doi.org/10.1039/C3CC44539A

    Article  CAS  PubMed  Google Scholar 

  20. Grynkiewicz, G., Poenie, M., & Tsien, R. Y. (1985). A new generation of Ca2+ indicators with greatly improved fluorescence properties. The Journal of Biological Chemistry, 260(6), 3440–3450.

    Article  CAS  Google Scholar 

  21. Zhang, X.-F., Zhang, T., Shen, S.-L., Miao, J.-Y., & Zhao, B.-X. (2015). A ratiometric lysosomal pH probe based on the coumarin–rhodamine FRET system. RSC Advances, 5(61), 49115–49121. https://doi.org/10.1039/C5RA06246B

    Article  CAS  Google Scholar 

  22. Feng, X., Zhang, T., Liu, J.-T., Miao, J.-Y., & Zhao, B.-X. (2016). A new ratiometric fluorescent probe for rapid, sensitive and selective detection of endogenous hydrogen sulfide in mitochondria. Chemical Communications, 52(15), 3131–3134. https://doi.org/10.1039/C5CC09267A

    Article  CAS  PubMed  Google Scholar 

  23. Li, Y., Su, W., Zhou, Z., Huang, Z., Wu, C., Yin, P., Li, H., & Zhang, Y. (2019). A dual-response near-infrared fluorescent probe for rapid detecting thiophenol and its application in water samples and bio-imaging. Talanta, 199, 355–360. https://doi.org/10.1016/j.talanta.2019.02.022

    Article  CAS  PubMed  Google Scholar 

  24. Chen, G., Tang, M., Fu, X., Cheng, F., Long, Y., Li, Y., Jiao, Y., & Zeng, R. (2019). A highly sensitive and selective “off-on” porphyrin-based fluorescent sensor for detection of thiophenol. Journal of Molecular Structure, 1179, 593–596. https://doi.org/10.1016/j.molstruc.2018.10.097

    Article  CAS  Google Scholar 

  25. Shen, Y., Dai, L., Zhang, Y., Zhang, X., Zhang, C., Liu, S., Tang, Y., & Li, H. (2020). A ratiometric fluorescent probe for visualization of thiophenol and its applications. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 230, 118061. https://doi.org/10.1016/j.saa.2020.118061

    Article  CAS  PubMed  Google Scholar 

  26. Gai-Qing, Z., & Cai-Xia, Y. (2021). Application of fluorescent probe based on dicyanoisophorone in detection of thiophenol. Chinese Journal of Inorganic Chemistry, 37(7), 1245–1250. https://doi.org/10.11862/CJIC.2021.161

    Article  Google Scholar 

  27. Jiaojiao, S., Jian, C., Hailong, C., Jincheng, W., & Shuxin, W. (2019). Fluorescent turn-on probe based on napthalimide fused triphenylamine unit for quickly detecting thiophenol in aqueous solution. Chemical Research in Chinese Universities, 35(6), 990–996. https://doi.org/10.1007/s40242-019-9033-5

    Article  CAS  Google Scholar 

  28. Li, Z., Wu, Y., Shen, Y., & Gu, B. (2020). Simple NIR-emitting ESIPT fluorescent probe for thiophenol with a remarkable stokes shift and its application. ACS Omega, 5(19), 10808–10814. https://doi.org/10.1021/acsomega.0c00389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yao, Z., Ge, W., Guo, M., Xiao, K., Qiao, Y., Cao, Z., & Wu, H.-C. (2018). Ultrasensitive detection of thiophenol based on a water-soluble pyrenyl probe. Talanta, 185, 146–150. https://doi.org/10.1016/j.talanta.2018.03.068

    Article  CAS  PubMed  Google Scholar 

  30. Xiao, L., Zhang, D., Zhang, J., & Pu, S. (2021). A iridium(III) complex-based “turn-on” fluorescent probe with two recognition site for rapid detection of thiophenol and its application in water samples and human serum. Tetrahedron, 77, 131738. https://doi.org/10.1016/j.tet.2020.131738

    Article  CAS  Google Scholar 

  31. Hao, Y., Yin, Q., Zhang, Y., Xu, M., & Chen, S. (2019). Recent progress in the development of fluorescent probes for thiophenol. Molecules, 24(20), 3716. https://doi.org/10.3390/molecules24203716

    Article  CAS  PubMed Central  Google Scholar 

  32. Cheng, Y., Ma, F., Gu, X., Liu, Z., Zhang, X., Xue, T., Zheng, Y., & Qi, Z. (2019). A novel isophorone-based red-emitting/NIR probe for thiophenol and its application in real water sample and vivo. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 210, 281–288. https://doi.org/10.1016/j.saa.2018.11.030

    Article  CAS  Google Scholar 

  33. Guo, Z., Park, S., Yoon, J., & Shin, I. (2014). Recent progress in the development of near-infrared fluorescent probes for bioimaging applications. Chemical Society Reviews, 43(1), 16–29. https://doi.org/10.1039/C3CS60271K

    Article  PubMed  Google Scholar 

  34. Wu, Q., Wang, J., & Liang, W. (2021). A red-to–Near-infrared fluorescent probe for the detection of thiophenol based on a novel hydroxylflavone-quinoline-amino molecular system with large Stokes shift. Dyes and Pigments, 190, 109289. https://doi.org/10.1016/j.dyepig.2021.109289

    Article  CAS  Google Scholar 

  35. Tao, Y., Han, L., Li, X., Han, Y., & Liu, Z. (2016). Molecular structure, spectroscopy (FT-IR, FT-Raman), thermodynamic parameters, molecular electrostatic potential and HOMO-LUMO analysis of 2, 6-dichlorobenzamide. Journal of Molecular Structure, 1108, 307–314. https://doi.org/10.1016/j.molstruc.2015.12.031

    Article  CAS  Google Scholar 

  36. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A.V., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J.J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Keith, T.A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A.P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Millam, J.M., Klene, M., Adamo, C., Cammi, R., Ochterski, J.W., Martin, R.L., Morokuma, K., Farkas, O., Foresman, J.B., Fox, D.J. (2016). Gaussian 16 Rev. C.01. Wallingford, CT

  37. Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785–789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  38. Miehlich, B., Savin, A., Stoll, H., & Preuss, H. (1989). Results obtained with the correlation energy density functionals of becke and Lee. Yang and Parr. Chemical Physics Letters, 157(3), 200–206. https://doi.org/10.1016/0009-2614(89)87234-3

    Article  CAS  Google Scholar 

  39. Mennucci, B., Cancès, E., & Tomasi, J. (1997). Evaluation of solvent effects in isotropic and anisotropic dielectrics and in ionic solutions with a unified integral equation method: Theoretical bases, computational implementation, and numerical applications. The Journal of Physical Chemistry B, 101(49), 10506–10517. https://doi.org/10.1021/jp971959k

    Article  CAS  Google Scholar 

  40. Huber, A. S. C., & Ahlrichs, R. (1994). Fully optimized contracted gaussian basis sets of triple zeta valence quality for atoms Li to Kr. The Journal of Chemical Physics, 100, 5829–5835.

    Article  Google Scholar 

  41. Schäfer, A., Horn, H., & Ahlrichs, R. (1992). Fully optimized contracted gaussian basis sets for atoms Li to Kr. The Journal of Chemical Physics, 97, 2571–2577.

    Article  Google Scholar 

  42. Barbatti, M., Ruckenbauer, M., Plasser, F., Pittner, J., Granucci, G., Persico, M., & Lischka, H. (2014). Newton-X: A surface–Hopping program for nonadiabatic molecular dynamics. WIREs Computational Molecular Science, 4(1), 26–33. https://doi.org/10.1002/wcms.1158

    Article  CAS  Google Scholar 

  43. Cancès, E., Mennucci, B., & Tomasi, J. (1997). A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. The Journal of Chemical Physics, 107(8), 3032–3041. https://doi.org/10.1063/1.474659

    Article  Google Scholar 

  44. Miertuš, S., Scrocco, E., & Tomasi, J. (1981). Electrostatic interaction of a solute with a continuum. a direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chemical Physics, 55(1), 117–129. https://doi.org/10.1016/0301-0104(81)85090-2

    Article  Google Scholar 

  45. Cammi, R., & Tomasi, J. (1995). Remarks on the use of the apparent surface charges (ASC) methods in solvation problems: Iterative versus matrix-inversion procedures and the renormalization of the apparent charges. Journal of Computational Chemistry, 16(12), 1449–1458. https://doi.org/10.1002/jcc.540161202

    Article  CAS  Google Scholar 

  46. Lu, T., & Chen, F. (2012). Multiwfn: A multifunctional wavefunction analyzer. Journal of Computational Chemistry, 33(5), 580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  47. Liu, Z., Lu, T., & Chen, Q. (2020). An sp–Hybridized all-carboatomic ring, cyclo[18]carbon: Electrzonic structure, electronic spectrum, and optical nonlinearity. Carbon, 165, 461–467. https://doi.org/10.1016/j.carbon.2020.05.023

    Article  CAS  Google Scholar 

  48. Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

  49. Yanai, T., Tew, D. P., & Handy, N. C. (2004). A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chemical Physics Letters, 393(1), 51–57. https://doi.org/10.1016/j.cplett.2004.06.011

    Article  CAS  Google Scholar 

  50. Johnson, E. R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A. J., & Yang, W. (2010). Revealing noncovalent interactions. Journal of the American Chemical Society, 132(18), 6498–6506. https://doi.org/10.1021/ja100936w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Qi, Y., Tang, Z., Zhan, H., Wang, Y., Zhao, Y., Fei, X., Tian, J., Yu, L., & Liu, J. (2020). A new interpretation of the ESIPT mechanism of 2-(benzimidazol-2-yl)-3–Hydroxychromone derivatives. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 224, 117359. https://doi.org/10.1016/j.saa.2019.117359

    Article  CAS  PubMed  Google Scholar 

  52. Zhan, H., Tang, Z., Li, Z., Chen, X., Tian, J., Fei, X., & Wang, Y. (2021). The influence of intermolecular hydrogen bonds on single fluorescence mechanism of 1–Hydroxy-11H-benzo [b]fluoren-11-one and 10–Hydroxy-11H-benzo [b]fluoren-11-one. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 260, 119993. https://doi.org/10.1016/j.saa.2021.119993

    Article  CAS  PubMed  Google Scholar 

  53. Luo, X., Yang, Y., & Li, Y. (2020). Theoretical insights into ESIPT mechanism of the two protons system BH-BA in dichloromethane solution. Journal of Molecular Liquids, 319, 114145. https://doi.org/10.1016/j.molliq.2020.114145

    Article  CAS  Google Scholar 

  54. Zhao, J., Dong, H., Yang, H., & Zheng, Y. (2018). Exploring and elaborating the novel excited state dynamical behavior of a bisflavonol system. Organic Chemistry Frontiers, 5(18), 2710–2718. https://doi.org/10.1039/C8QO00688A

    Article  CAS  Google Scholar 

  55. Tao, Y., Li, X., Han, L., Zhang, W., & Liu, Z. (2016). Spectroscopy (FT-IR, FT-Raman), hydrogen bonding, electrostatic potential and HOMO-LUMO analysis of tioxolone based on DFT calculations. Journal of Molecular Structure, 1121, 188–195. https://doi.org/10.1016/j.molstruc.2016.05.077

    Article  CAS  Google Scholar 

  56. Jia, X., Yang, Y., Zhai, H., Zhang, Q., He, Y., Liu, Y., & Liu, Y. (2021). The mechanisms of a bifunctional fluorescent probe for detecting fluoride and sulfite based on excited-state intramolecular proton transfer and intramolecular charge transfer. Structural Dynamics, 8(3), 034103. https://doi.org/10.1063/4.0000095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhou, P., Liu, J., Yang, S., Chen, J., Han, K., & He, G. (2012). The invalidity of the photo-induced electron transfer mechanism for fluorescein derivatives. Physical Chemistry Chemical Physics, 14(43), 15191–15198. https://doi.org/10.1039/C2CP42167D

    Article  CAS  PubMed  Google Scholar 

  58. Lou, Z., Zhou, X., Tang, Z., & Zhou, P. (2020). Theoretical Insights into the excited state decays of a donor-acceptor dyad: Is the twisted and rehybridized intramolecular charge-transfer state involved? The Journal of Physical Chemistry B, 124(22), 4564–4572. https://doi.org/10.1021/acs.jpcb.0c02455

    Article  CAS  PubMed  Google Scholar 

  59. Tang, Z., & Zhou, P. (2020). New insights into the excited state dynamics of quinoline-pyrazole isomerism. The Journal of Physical Chemistry B, 124(16), 3400–3407. https://doi.org/10.1021/acs.jpcb.0c01624

    Article  CAS  PubMed  Google Scholar 

  60. Zhou, P., Li, P., Zhao, Y., & Han, K. (2019). Restriction of flip-flop motion as a mechanism for aggregation-induced emission. The Journal of Physical Chemistry Letters, 10(21), 6929–6935. https://doi.org/10.1021/acs.jpclett.9b02922

    Article  CAS  PubMed  Google Scholar 

  61. Zhou, P., Tang, Z., Li, P., & Liu, J. (2021). Unraveling the mechanism for tuning the fluorescence of fluorescein derivatives: The role of the conical intersection and nπ* state. The Journal of Physical Chemistry Letters, 12(28), 6478–6485. https://doi.org/10.1021/acs.jpclett.1c01774

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Basic Resources Investigation Program of China (No. 2019FY100500), the Open Project of SKLMRD (the open fund of the state key laboratory of molecular reaction dynamics in DICP, CAS) and the General Program from Education department of Liaoning Province (Grant LJKZ0534).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Wang or Fang Yu.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zhang, K., Liu, J. et al. The sensing mechanism of fluorescent probe for PhSH and the process of ESIPT. Photochem Photobiol Sci 21, 1055–1065 (2022). https://doi.org/10.1007/s43630-022-00193-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-022-00193-4

Keywords

Navigation