Skip to main content
Log in

A full-dimensional ab initio potential energy surface and rovibrational spectra for the Ar–SO2 complex

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We present a full-dimensional potential energy surface for Ar–SO2 which involves three intramolecular \(Q_{1}\), \(Q_{2}\) and \(Q_{3}\) normal modes for the \(\nu_{1}\) symmetric stretching, \(\nu_{2}\) bending and \(\nu_{3}\) asymmetric stretching vibrations of SO2. The intermolecular potential was computed at the [CCSD(T)]-F12a level with aug-cc-pVTZ basis set plus the midpoint bond functions (3s3p2d1f1g). Three vibrationally averaged potentials of Ar–SO2 with SO2 in the ground state as well as the \(\nu_{1}\) and \(\nu_{3}\) excited states were generated by integrating three intramolecular coordinates. Each potential has a global minimum with the non-planar geometry and two saddle points. The radial discrete variable representation (DVR)/angular finite basis representation (FBR) method and Lanczos algorithm were utilized to calculate the rovibrational bound states and energy levels of Ar–SO2. The vibrational band origin shifts for this complex in the \(\nu_{1}\) and \(\nu_{3}\) regions of SO2 were determined to be − 0.0970 and − 0.7537 cm−1, respectively. The calculated origin shifts as well as the microwave and infrared transition frequencies agree well with available experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rodrigues SPJ, Sabín JA, Varandas AJC (2002) J Phys Chem A 106:556

    Article  CAS  Google Scholar 

  2. Ulenikov ON, Bekhtereva ES, Alanko S, Horneman VM, Gromova OV, Leroy C (2009) J Mol Spectrosc 257:137

    Article  CAS  Google Scholar 

  3. Kłos J, Alexander MH, Kumar P, Poirier B, Jiang B, Guo H (2016) J Chem Phys 144:174301

    Article  PubMed  Google Scholar 

  4. Xie CJ, Hu XX, Zhou LS, Xie DQ, Guo H (2013) J Chem Phys 139:014305

    Article  PubMed  Google Scholar 

  5. Lévȇque C, Komainda A, Taїeb R, Köppel H (2013) J Chem Phys 138:044320

    Article  PubMed  Google Scholar 

  6. Xue B, Dai HL, Troxler T (1997) Chem Phys Lett 265:154

    Article  CAS  Google Scholar 

  7. Nelson DD, Fraser GT, Klemperer W (1985) J Chem Phys 83:945

    Article  CAS  Google Scholar 

  8. DeLeon RL, Yokozeki A, Muenter JS (1980) J Chem Phys 73:2044

    Article  CAS  Google Scholar 

  9. Coudert LH, Matsumura K, Lovas FJ (1991) J Mol Spectrosc 147:46

    Article  CAS  Google Scholar 

  10. Lewin AK, Walsh MA, Dyke TR (1992) J Mol Spectrosc 151:334

    Article  CAS  Google Scholar 

  11. Li X, Pu YY, Liu Z, Sun YX, Duan CX (2021) J Mol Spectrosc 383:111559

    Article  Google Scholar 

  12. Schäfer M (2001) J Mol Struct 599:57

    Article  Google Scholar 

  13. Hippler H, Schranz HW, Troe J (1986) J Phys Chem 90:6158

    Article  CAS  Google Scholar 

  14. Krylova AI, Nemukhin AV, Stepanov NF (1992) J Mol Struct:THEOCHEM 94:55

    Article  CAS  Google Scholar 

  15. Bone RGA (1993) Chem Phys 178:255

    Article  CAS  Google Scholar 

  16. Huang J, Yang DZ, Zhou YZ, Xie DQ (2019) J Chem Phys 150:154302

    Article  PubMed  Google Scholar 

  17. Yuan T, Sun XL, Hu Y, Zhu H (2014) J Chem Phys 141:104306

    Article  PubMed  Google Scholar 

  18. Hong Q, Qin M, Zhu H (2018) Acta Chim Sinica 76:138

    Article  CAS  Google Scholar 

  19. da Silva RS, Ballester MY (2018) J Chem Phys 149:144309

    Article  PubMed  Google Scholar 

  20. Zhai Y, Li H, Le Roy RJ (2018) Mol Phys 116:843

    Article  CAS  Google Scholar 

  21. Echave J, Clary DC (1992) Chem Phys Lett 190:225

    Article  CAS  Google Scholar 

  22. Wei H, Carrington T (1992) J Chem Phys 97:3029

    Article  CAS  Google Scholar 

  23. Adler TB, Knizia G, Werner HJ (2007) J Chem Phys 127:221106

    Article  PubMed  Google Scholar 

  24. Knizia G, Adler TB, Werner HJ (2009) J Chem Phys 130:054104

    Article  PubMed  Google Scholar 

  25. Woon DE, Dunning TH (1993) J Chem Phys 98:1358

    Article  CAS  Google Scholar 

  26. Dunning TH (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  27. Pedersen TB, Fernandez B, Koch H, Makarewicz J (2001) J Chem Phys 115:8431

    Article  CAS  Google Scholar 

  28. Liu JM, Zhai Y, Li H (2017) J Chem Phys 147:044313

    Article  PubMed  Google Scholar 

  29. Denis-Alpizar O, Kalugina Y, Stoecklin T, Vera MH, Lique F (2013) J Chem Phys 139:224301

    Article  PubMed  Google Scholar 

  30. Nasri S, Ajili Y, Jaidane NE, Kalugina YN, Halvick P, Stoecklin T, Hochlaf M (2015) J Chem Phys 142:174301

    Article  PubMed  Google Scholar 

  31. Dagdigian PJ (2020) J Chem Phys 152:074307

    Article  CAS  PubMed  Google Scholar 

  32. Hou D, Yang JT, Zhai Y, Zhang XL, Liu JM, Li H (2020) J Chem Phys 152:214302

    Article  CAS  PubMed  Google Scholar 

  33. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  34. Werner HJ, Knowles PJ, Amos RD, et al. (2000) MOLPRO, version 2000.1, a package of ab initio programs. http://www.molpro.net

  35. Flaud JM, Perrin A, Salah LM, Lafferty WJ, Guelachvili G (1993) J Mol Spectrosc 160:272

    Article  CAS  Google Scholar 

  36. Hou D, Ma YT, Zhang XL, Li H (2016) J Chem Phys 144:014301

    Article  PubMed  Google Scholar 

  37. Hou D, Ma YT, Zhang XL, Li H (2016) J Chem Phys 330:217

    CAS  Google Scholar 

  38. Lei JP, Zhou YZ, Xie DQ (2012) J Chem Phys 136:084310

    Article  PubMed  Google Scholar 

  39. Lei JP, Zhou YZ, Xie DQ, Zhu H (2012) J Chem Phys 137:224314

    Article  PubMed  Google Scholar 

  40. Pei X, Peng Y, Zhu H (2021) Chem Phys Lett 763:138156

    Article  CAS  Google Scholar 

  41. Leforestier C (1994) J Chem Phys 101:7357

    Article  CAS  Google Scholar 

  42. Lin SY, Guo H (2002) J Chem Phys 117:5183

    Article  CAS  Google Scholar 

  43. Colbert DT, Miller WH (1992) J Chem Phys 96:1982

    Article  CAS  Google Scholar 

  44. Wang L, Yang MH (2008) J Chem Phys 129:174305

    Article  PubMed  Google Scholar 

  45. Sun XL, Hu Y, Zhu H (2013) J Chem Phys 138:204312

    Article  PubMed  Google Scholar 

  46. Lanczos C (1950) J Res Natl Bur Stand 45:255

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21973065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 120 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, F., Peng, Y. & Zhu, H. A full-dimensional ab initio potential energy surface and rovibrational spectra for the Ar–SO2 complex. Theor Chem Acc 141, 51 (2022). https://doi.org/10.1007/s00214-022-02914-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-022-02914-5

Keywords

Navigation