Skip to main content

Advertisement

Log in

Evolution of the structural and electronic properties of AlnP13−n (n = 0–13) clusters

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We perform calculations for the most stable structures of AlnP13−n semiconductor binary clusters with n = 0–13 by using genetic algorithm combined with density functional theory calculations. New lowest-lying AlnP13−n clusters (n = 1–11) are found. It is shown that Al12P1 favors slightly distorted icosahedra structure having a vertex phosphorus atom, not previously reported the icosahedra structure with a central phosphorus atom. The geometric structure and electronic properties are discussed. The results show that the binding energy increases monotonically with the increase in the number of aluminum atoms. The odd even oscillation curve of the second-order difference of total energy is reversed when the number of aluminum atoms n = 8. Al4P9 has relatively large second-order energy difference, large ionization energy, and large hardness, which is considered to be more chemically stable than other mixed clusters of AlnP13−n (n = 1–12) in our calculation. These results establish a more complete picture for the structural evolution of the medium-sized aluminum phosphorus clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rey C, Alemany MMG, Diéguez O, Gallego LJ (2000) Ab initio density-functional calculations of the geometries, electronic structures, and magnetic moments of Ni-C clusters. Phys Rev B 62:12640–12643. https://doi.org/10.1103/PhysRevB.62.12640

    Article  CAS  Google Scholar 

  2. De Souza DG, Cezar HM, Rondina GG et al (2016) A basin-hopping Monte Carlo investigation of the structural and energetic properties of 55- and 561-atom bimetallic nanoclusters: the examples of the ZrCu, ZrAl, and CuAl systems. J Phys Condens Matter 28:175302. https://doi.org/10.1088/0953-8984/28/17/175302

    Article  CAS  PubMed  Google Scholar 

  3. Li W, Chen F (2013) A density functional theory study of structural, electronic, optical and magnetic properties of small Ag–Cu nanoalloys. J Nanopart Res 15:1809(1–14). https://doi.org/10.1007/s11051-013-1809-9

    Article  CAS  Google Scholar 

  4. Yang R, Zhu C, Wei Q, Zhang D (2017) First-principles study on phases of AlP. Solid State Commun 267:23–28. https://doi.org/10.1016/j.ssc.2017.09.008

    Article  CAS  Google Scholar 

  5. Takeuchi H (2014) Binary Lennard-Jones atomic clusters: Structural features induced by large-sized atoms. Comput Theor Chem 1050:68–73. https://doi.org/10.1016/j.comptc.2014.10.017

    Article  CAS  Google Scholar 

  6. Boustani I (2020) Molecular modelling and synthesis of nanomaterials: applications in carbon- and boron-based nanotechnology. Springer series in materials science. https://doi.org/10.1007/978-3-030-32726-2

  7. Mokkath JH, Henzie J (2017) Chemical ordering patterns and magnetism of NiAl nanoclusters. Mater Res Express 4:015010. https://doi.org/10.1088/2053-1591/aa575f

    Article  CAS  Google Scholar 

  8. Lang SM, Bernhardt TM (2017) Chemical reactivity and catalytic properties of binary gold clusters: atom by atom tuning in a gas phase approach. Clusters 23:325–359. https://doi.org/10.1007/978-3-319-48918-6_10

    Article  Google Scholar 

  9. Lacaze-Dufaure C, Blanc C, Mankowski G, Mijoule C (2007) Density functional theoretical study of Cun, Aln (n = 4–31) and copper doped aluminum clusters: electronic properties and reactivity with atomic oxygen. Surf Sci 601:1544–1553. https://doi.org/10.1016/j.susc.2007.01.015

    Article  CAS  Google Scholar 

  10. Zhang ZX, Cao BB, Duan HM (2008) Density-functional calculations of MnC (M = Fe Co, Ni, Cu, n = 1–6) clusters. J Mol Struct THEOCHEM 863:22–27. https://doi.org/10.1016/j.theochem.2008.05.015

    Article  CAS  Google Scholar 

  11. Das S, Pal S, Krishnamurty S (2014) Dinitrogen activation by silicon and phosphorus doped aluminum clusters. J Phys Chem C 118:19869–19878. https://doi.org/10.1021/jp505700a

    Article  CAS  Google Scholar 

  12. Lv J, Zhang F-Q, Jia J-F et al (2010) First-principles study of structural, electronic and magnetic properties of Co13−nMn (n = 1, 2, M = Mn, V and Al) clusters. J Mol Struct THEOCHEM 955:14–22. https://doi.org/10.1016/j.theochem.2010.05.008

    Article  CAS  Google Scholar 

  13. Wang SJ, Kuang XY, Lu C et al (2011) Geometries, stabilities, and electronic properties of Pt-group-doped gold clusters, their relationship to cluster size, and comparison with pure gold clusters. Phys Chem Chem Phys 13:10119–10130. https://doi.org/10.1039/c0cp02506b

    Article  CAS  PubMed  Google Scholar 

  14. Jellinek J (2008) Nanoalloys: tuning properties and characteristics through size and composition. Faraday Discuss 138:11–35. https://doi.org/10.1039/b800086g

    Article  CAS  PubMed  Google Scholar 

  15. Chen A, Holt-Hindle P (2010) Platinum-based nanostructured materials: synthesis, properties, and applications. Chem Rev 110:3767–3804. https://doi.org/10.1021/cr9003902

    Article  CAS  PubMed  Google Scholar 

  16. Inami E, Hamada I, Ueda K et al (2015) Room-temperature-concerted switch made of a binary atom cluster. Nat Commun 6:6231. https://doi.org/10.1038/ncomms7231

    Article  CAS  PubMed  Google Scholar 

  17. Arslan H (2008) Structures and energetic of palladium-cobalt binary clusters. Int J Mod Phys C 19:1243–1255. https://doi.org/10.1142/S0129183108012832

    Article  CAS  Google Scholar 

  18. Baletto F, Ferrando R (2005) Structural properties of nanoclusters: energetic, thermodynamic, and kinetic effects. Rev Mod Phys 77:371–423. https://doi.org/10.1103/RevModPhys.77.371

    Article  CAS  Google Scholar 

  19. Futschek T, Hafner J, Marsman M (2006) Stable structural and magnetic isomers of small transition-metal clusters from the Ni group: an ab initio density-functional study. J Phys Condens Matter 18:9703–9748. https://doi.org/10.1088/0953-8984/18/42/016

    Article  CAS  Google Scholar 

  20. Belcher DR, Radny MW, King BV (2007) Structure and stability of small bimetallic Al-based clusters: an ab initio DFT study. Mater Trans 48:689–692. https://doi.org/10.2320/matertrans.48.689

    Article  CAS  Google Scholar 

  21. Sengupta T, Das S, Pal S (2015) Oxidative addition of the C-I bond on aluminum nanoclusters. Nanoscale 7:12109–12125. https://doi.org/10.1039/C5NR02278A

    Article  CAS  PubMed  Google Scholar 

  22. Yong Y, Li C, Li X et al (2015) Ag7Au6 cluster as a potential gas sensor for CO, HCN, and NO detection. J Phys Chem C 119:7534–7540. https://doi.org/10.1021/acs.jpcc.5b02151

    Article  CAS  Google Scholar 

  23. Rahma OM, Chen H (2020) Structure, stability and bonding features of AlnSim clusters. Theor Chem Acc 139:103. https://doi.org/10.1007/s00214-020-02616-w

    Article  CAS  Google Scholar 

  24. Henry DJ, Szarek P, Hirai K et al (2011) Reactivity and regioselectivity of aluminum nanoclusters: insights from regional density functional theory. J Phys Chem C 115:1714–1723. https://doi.org/10.1021/jp109804y

    Article  CAS  Google Scholar 

  25. Wang M, Huang X, Du Z, Li Y (2009) Structural, electronic, and magnetic properties of a series of aluminum clusters doped with various transition metals. Chem Phys Lett 480:258–264. https://doi.org/10.1016/j.cplett.2009.09.027

    Article  CAS  Google Scholar 

  26. Yildirim H, Kara A, Rahman TS (2012) Tailoring electronic structure through alloying: the AgnCu34–n(n=0–34) nanoparticle family. J Phys Chem C 116:281–291. https://doi.org/10.1021/jp208564h

    Article  CAS  Google Scholar 

  27. Das NK, Shoji T (2012) Geometry, orbital interaction, and oxygen chemisorption properties of chromium-doped nickel clusters. J Phys Chem C 116:13353–13367. https://doi.org/10.1021/jp300207z

    Article  CAS  Google Scholar 

  28. Morais FO, Andriani KF, Da Silva JLF (2021) Investigation of the stability mechanisms of eight-atom binary metal clusters using DFT calculations and k-means clustering algorithm. J Chem Inf Model 61:3411–3420. https://doi.org/10.1021/acs.jcim.1c00253

    Article  CAS  Google Scholar 

  29. Lloyd LD, Johnston RL, Salhi S, Wilson NT (2004) Theoretical investigation of isomer stability in platinum–palladium nanoalloy clusters. J Mater Chem 14:1691–1704. https://doi.org/10.1039/B313811A

    Article  CAS  Google Scholar 

  30. Ma Q-M, Xie Z, Liu Y, Li Y-C (2010) The structures, binding energies and magnetic moments of Cr–C clusters. Solid State Commun 150:1439–1444. https://doi.org/10.1016/j.ssc.2010.05.028

    Article  CAS  Google Scholar 

  31. Ončák M, Srnec M (2008) Electronic structure and physical properties of MiXi clusters (M = B, Al; X = N, P; i = 1, 2, 3): Ab initio study. J Comput Chem 29:233–246. https://doi.org/10.1002/jcc.20781

    Article  CAS  PubMed  Google Scholar 

  32. Bruna PJ, Grein F (1989) Ab initio study of the electronic structure of AlP and electron affinity of AlP. J Phys B At Mol Opt Phys 22:1913–1929. https://doi.org/10.1088/0953-4075/22/12/009

    Article  CAS  Google Scholar 

  33. Meier U, Peyerimhoff SD, Bruna PJ, Karna SP, Grein F (1989) MRD CI study on the low-lying states of AlP. Chem Phys 130:31–44. https://doi.org/10.1016/0301-0104(89)87034-X

    Article  CAS  Google Scholar 

  34. Feng PY, Balasubramanian K (2000) Potential energy surfaces of electronic states of AlP2, Al2P and their ions. Chem Phys Lett 318:417–426. https://doi.org/10.1016/S0009-2614(00)00024-5

    Article  CAS  Google Scholar 

  35. Xu WG, Zhang YC, Lu SX, Zhang RC (2009) Geometries, stability and aromaticity of [Al2P2]2-, [M(Al2P2)] (M = Li, Na, K, Cu) and N(Al2P2) (N = Be, Mg, Ca, Zn) clusters. J Mol Struct THEOCHEM 900:44–49. https://doi.org/10.1016/j.theochem.2008.12.023

    Article  CAS  Google Scholar 

  36. Feng PY, Balasubramanian K (1999) Spectroscopic properties of Al2P2, Al2P2+, and Al2P2 and comparison with their ga and in analogues. J Phys Chem A 103:9093–9099. https://doi.org/10.1021/jp991542

    Article  CAS  Google Scholar 

  37. Archibong EF, Gregorius RM, Alexander SA (2000) Structures and electron detachment energies of AlP2 and Al2P2. Chem Phys Lett 321:253–261. https://doi.org/10.1016/S0009-2614(00)00355-9

    Article  CAS  Google Scholar 

  38. Archibong EF, Goh SK, Marynick DS (2002) Electronic structure of AlP3 and AlP3. Chem Phys Lett. https://doi.org/10.1016/S0009-2614(02)00901-6

    Article  Google Scholar 

  39. Malaspina T, Coutinho K, Canuto S (2005) The relative stability of the two isomers of AlP3. Chem Phys Lett 411:14–17. https://doi.org/10.1016/j.cplett.2005.06.007

    Article  CAS  Google Scholar 

  40. Malaspina T, Canuto S (2007) On the relative abundance and interconversion of the two lowest isomers of AlP3. Chem Phys Lett 444:247–251. https://doi.org/10.1016/j.cplett.2007.07.039

    Article  CAS  Google Scholar 

  41. Ueno LT, Lopes C, Malaspina T et al (2012) Theoretical study of the XP3 (X = Al, B, Ga) clusters. Chem Phys 399:23–27. https://doi.org/10.1016/j.chemphys.2011.06.004

    Article  CAS  Google Scholar 

  42. Feng PY, Balasubramanian K (1999) Electronic states of Al3P and AlP3 and their positive ions. Chem Phys Lett 301:458–466. https://doi.org/10.1016/S0009-2614(99)00051-2

    Article  CAS  Google Scholar 

  43. Archibong EF, St-Amant A, Goh SK, Marynick D (2002) Structure and electron detachment energies of Al3P and Al3P3. J Phys Chem A 106:5932–5937. https://doi.org/10.1021/jp014669j

    Article  CAS  Google Scholar 

  44. Archibong EF, Kandawa-Schulz M, Mvula EN (2005) Electron detachment energies of Al4P and Ga4P. Chem Phys Lett 414:341–345. https://doi.org/10.1016/j.cplett.2005.08.102

    Article  CAS  Google Scholar 

  45. Al-Laham MA, Raghavachari K (1993) Theoretical study of Ga4As4, Al4P4, and Mg4S4 clusters. J Chem Phys 98:8770–8776. https://doi.org/10.1063/1.464485

    Article  CAS  Google Scholar 

  46. Wu C, Lu P, Yu Z et al (2013) Structural and electronic properties of neutral clusters Al12X (X = P, As, Sb, and Bi) and their cations. J Comput Theor Nanosci 10:1055–1060. https://doi.org/10.1166/jctn.2013.2806

    Article  CAS  Google Scholar 

  47. Akutsu M, Koyasu K, Atobe J et al (2006) Experimental and theoretical characterization of aluminum-based binary superatoms of Al12X and their cluster salts. J Phys Chem A 110:12073–12076. https://doi.org/10.1021/jp065161p

    Article  CAS  PubMed  Google Scholar 

  48. Beheshtian J, Bagheri Z, Kamfiroozi M, Ahmadi A (2012) A comparative study on the B12N12, Al12N12, B12P12 and Al12P12 fullerene-like cages. J Mol Model 18:2653–2658. https://doi.org/10.1007/s00894-011-1286-y

    Article  CAS  PubMed  Google Scholar 

  49. Salari AA (2017) Are the inorganic B24N24, Al24N24, B24P24 and Al24P24 nanoclusters synthesizable or not? A DFT study. Inorganica Chim Acta 456:18–23. https://doi.org/10.1016/j.ica.2016.11.006

    Article  CAS  Google Scholar 

  50. Charkin OP, Klimenko NM (2016) Theoretical study of isomerism in nitrogen- and phosphorus-substituted aluminum clusters M6Al38 and M12Al32 (M = N, P). Russ J Inorg Chem 61:993–1002. https://doi.org/10.1134/S0036023616080040

    Article  CAS  Google Scholar 

  51. Tozzini V, Buda F, Fasolino A (2001) Fullerene-like III−V clusters: a density functional theory prediction. J Phys Chem B 105:12477–12480. https://doi.org/10.1021/jp0134087

    Article  CAS  Google Scholar 

  52. Al-Laham MA, Trucks GW, Raghavachari K (1992) Theoretical study of small aluminum phosphide and magnesium sulfide clusters. J Chem Phys 96:1137. https://doi.org/10.1063/1.462201

    Article  CAS  Google Scholar 

  53. Costales A, Kandalam AK, Franco R, Pandey R (2002) Theoretical study of structural and vibrational properties of (AlP)n, (AlAsn, (GaP)n, (GaAs)n, (InP)n, and (InAs)n clusters with n= 1, 2, 3. J Phys Chem B 106:1940–1944. https://doi.org/10.1021/jp013906f

    Article  CAS  Google Scholar 

  54. Qu Y, Bian X (2005) Electronic structure and stability of AlnPn (n = 2–4) clusters. J Comput Chem 26:226–234. https://doi.org/10.1002/jcc.20146

    Article  CAS  PubMed  Google Scholar 

  55. Tomasulo A, Ramakrishna MV (1997) Computational studies of small (AlP)N clusters. Z Phys D 40:483–485. https://doi.org/10.1007/s004600050258

    Article  CAS  Google Scholar 

  56. Tomasulo A, Ramakrishna MV (1996) Density functional studies of aluminum phosphide cluster structures. J Chem Phys 105:10449–10455. https://doi.org/10.1063/1.472928

    Article  CAS  Google Scholar 

  57. Karamanis P, Leszczynski J (2008) Correlations between bonding, size, and second hyperpolarizability (γ) of small semiconductor clusters: Ab initio study on AlnPn clusters with n=2, 3, 4, 6, and 9. J Chem Phys 128:154323. https://doi.org/10.1063/1.2902287

    Article  CAS  PubMed  Google Scholar 

  58. Zhao J, Wang L, Jia J et al (2007) Lowest-energy structures of AlnPn (n = 1–9) clusters from density functional theory. Chem Phys Lett 443:29–33. https://doi.org/10.1016/j.cplett.2007.06.055

    Article  CAS  Google Scholar 

  59. Karamanis P, Xenides D, Leszczynski J (2008) Polarizability evolution on natural and artificial low dimensional binary semiconductor systems: a case study of stoichiometric aluminum phosphide semiconductor clusters. J Chem Phys 129:94708. https://doi.org/10.1063/1.2976771

    Article  CAS  Google Scholar 

  60. Guo L (2010) Evolution of the electronic structure and properties of neutral and charged aluminum phosphide clusters: a comprehensive analysis. J Alloys Compd 490:78–83. https://doi.org/10.1016/j.jallcom.2009.10.022

    Article  CAS  Google Scholar 

  61. Karamanis P, Xenides D, Leszcszynski J (2008) The polarizabilities of small stoichiometric aluminum phosphide clusters AlnPn (n = 2-9). Ab initio and density functional investigation. Chem Phys Lett 457:137–142. https://doi.org/10.1016/j.cplett.2008.03.070

    Article  CAS  Google Scholar 

  62. Krishtal A, Senet P, Van Alsenoy C (2010) Origin of the size-dependence of the polarizability per atom in heterogeneous clusters: the case of AlP clusters. J Chem Phys 133:154310. https://doi.org/10.1063/1.3494102

    Article  CAS  PubMed  Google Scholar 

  63. Xu W, Zhang Y, Zhai L (2009) Structures and aromaticity of the planar Al2P2n− (n = 1–4) clusters. Sci China Ser B Chem 52:2237–2242. https://doi.org/10.1007/s11426-009-0117-9

    Article  CAS  Google Scholar 

  64. Guo L (2013) Density functional study of structural and electronic properties of AlPn (2 ≤ n ≤ 12) clusters. J Clust Sci 24:165–176. https://doi.org/10.1007/s10876-012-0539-y

    Article  CAS  Google Scholar 

  65. Guo L (2009) Magic behavior and bonding nature in hydrogenated aluminum phosphide clusters. Mater Chem Phys 115:612–617. https://doi.org/10.1016/j.matchemphys.2009.01.025

    Article  CAS  Google Scholar 

  66. Guo L, Wu H (2008) Density functional study of structural and electronic properties of AlnP (2 ≤ n ≤ 12) clusters. J Nanoparticle Res 10:341–351. https://doi.org/10.1007/s11051-007-9258-y

    Article  CAS  Google Scholar 

  67. Wu H, Guo L, Jin Z (2004) First principles study of the structure, electronic state and stability of AlnPm anions. J Mol Struct THEOCHEM 683:43–50. https://doi.org/10.1016/j.theochem.2004.06.011

    Article  CAS  Google Scholar 

  68. Guo L, Wu H-S, Jin Z (2005) The aluminum phosphides AlmPn (m+n=2-5) and their anions: structures, electron affinities and vibrational frequencies. Int J Mass Spectrom 42:149–159. https://doi.org/10.1016/j.ijms.2004.10.018

    Article  CAS  Google Scholar 

  69. Guo L, Wu H, Jin Z (2004) Ab initio investigation of structures and stability of AlnPm clusters. J Mol Struct THEOCHEM 684:67–73. https://doi.org/10.1016/j.theochem.2004.06.038

    Article  CAS  Google Scholar 

  70. Akutsu M, Koyasu K, Atobe J et al (2017) Geometric and electronic properties of si-atom doped Al clusters: robustness of binary superatoms against charging. Phys Chem Chem Phys 19:20401–20411. https://doi.org/10.1039/C7CP03409A

    Article  CAS  PubMed  Google Scholar 

  71. Nakajima A, Taguwa T, Nakao K et al (1996) Photoelectron spectroscopy of binary-metal cluster anions containing sulfur atom. Surf Rev Lett 3:417–421. https://doi.org/10.1142/S0218625X96000759

    Article  CAS  Google Scholar 

  72. Rexer EF, Jellinek J, Krissinel EB et al (2002) Theoretical and experimental studies of the structures of 12-, 13-, and 14-atom bimetallic nickel/aluminum clusters. J Chem Phys 117:82–94. https://doi.org/10.1063/1.1481386

    Article  CAS  Google Scholar 

  73. Gómez H, Taylor TR, Zhao Y, Neumark DM (2002) Spectroscopy of the low-lying states of the group III–V diatomics, AlP, GaP, InP, and GaAs via anion photodetachment spectroscopy. J Chem Phys 117:8644–8656. https://doi.org/10.1063/1.1514050

    Article  CAS  Google Scholar 

  74. Liu Z-Y, Wang C-R, Huang R-B, Zheng L-S (1995) Mass distributions of binary aluminium cluster anions AlnXm (X = O, S, P, As, C). Int J Mass Spectrom Ion Process 141:201–208. https://doi.org/10.1016/0168-1176(95)04103-R

    Article  CAS  Google Scholar 

  75. Gómez H, Taylor TR, Neumark DM (2001) Anion photoelectron spectroscopy of aluminum phosphide clusters. J Phys Chem A 105:6886–6893. https://doi.org/10.1021/jp0105544

    Article  CAS  Google Scholar 

  76. Driess M, Kuntz S, Monsé C, Merz K (2000) Modular chemistry with aluminum phosphanides: cluster formation of (AlP)n (n = 3, 6, 7), Al4P3, and Al4Li4P6 frameworks. Chemistry 6:4343–4347. https://doi.org/10.1002/1521-3765(20001201)6:23%3c4343::AID-CHEM4343%3e3.0.CO;2-R

    Article  CAS  PubMed  Google Scholar 

  77. Soler JM, Artacho E, Gale JD et al (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter 14:2745–2779. https://doi.org/10.1088/0953-8984/14/11/302

    Article  CAS  Google Scholar 

  78. Johnston RL (2003) Evolving better nanoparticles: Genetic algorithms for optimising cluster geometries. Dalton Trans. https://doi.org/10.1039/b305686d

    Article  Google Scholar 

  79. Zhao J, Shi R, Sai L et al (2016) Comprehensive genetic algorithm for ab initio global optimisation of clusters. Mol Simul 42:809–819. https://doi.org/10.1080/08927022.2015.1121386

    Article  CAS  Google Scholar 

  80. Junquera J, Paz Ó, Sanchez-Portal D, Artacho E (2001) Numerical atomic orbitals for linear scaling. Phys Rev B 64:235111. https://doi.org/10.1103/PhysRevB.64.235111

    Article  CAS  Google Scholar 

  81. Hammer B, Hansen LB, Nørskov JK (1999) Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys Rev B 59:7413–7421. https://doi.org/10.1103/PhysRevB.59.7413

    Article  Google Scholar 

  82. Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993–2006. https://doi.org/10.1103/PhysRevB.43.1993

    Article  CAS  Google Scholar 

  83. Hestenes MR, Stiefel EL (1952) Methods of conjugate gradients for solving linear systems. J Res Nat Bur Stand 49:409–436

    Article  Google Scholar 

  84. Cai MF, Dzugan TP, Bondybey VE (1989) Fluorescence studies of laser vaporized aluminum: evidence for a 3Πu ground state of aluminum dimer. Chem Phys Lett 155:430–436. https://doi.org/10.1016/0009-2614(89)87181-7

    Article  CAS  Google Scholar 

  85. Chen MD, Chen QB, Liu J et al (2007) Parity alternation of ground-state Pn and Pn+ (n = 3–15) phosphorus clusters. J Phys Chem A 111:216–222. https://doi.org/10.1021/jp0669355

    Article  CAS  PubMed  Google Scholar 

  86. Molina B, Soto JR, Castro JJ (2012) Stability and nonadiabatic effects of the endohedral clusters X@Al 12 (X = B, C, N, Al, Si, P) with 39, 40, and 41 valence electrons. J Phys Chem C 116:9290–9299. https://doi.org/10.1021/jp3004135

    Article  CAS  Google Scholar 

  87. Cheng H-P, Berry RS, Whetten RL (1991) Electronic structure and binding energies of aluminum clusters. Phys Rev B Condens Matter 43:10647–10653. https://doi.org/10.1103/PhysRevB.43.10647

    Article  CAS  PubMed  Google Scholar 

  88. Akola J, Häkkinen H, Manninen M (1998) Ionization potential of aluminum clusters. Phys Rev B 58:3601–3604. https://doi.org/10.1103/PhysRevB.58.3601

    Article  CAS  Google Scholar 

  89. Akola J, Manninen M, Hakkinen H et al (1999) Photoelectron spectra of aluminum cluster anions: Temperature effects and ab initio simulations. Phys Rev B 60:R11297–R11300. https://doi.org/10.1103/PhysRevB.60.R11297

    Article  CAS  Google Scholar 

  90. Doye JPK (2003) A model metal potential exhibiting polytetrahedral clusters. J Chem Phys 119:1136–1147. https://doi.org/10.1063/1.1574797

    Article  CAS  Google Scholar 

  91. Khanna SN, Jena P (1992) Assembling crystals from clusters. Phys Rev Lett 69:1664–1667. https://doi.org/10.1103/PhysRevLett.69.1664

    Article  CAS  PubMed  Google Scholar 

  92. Ahlrichs R, Elliott SD (1999) Clusters of aluminium, a density functional study. Phys Chem Chem Phys 1:13–21. https://doi.org/10.1039/a807713d

    Article  CAS  Google Scholar 

  93. Lloyd LD, Johnston RL (1998) Modelling aluminium clusters with an empirical many-body potential. Chem Phys 236:107–121. https://doi.org/10.1016/S0301-0104(98)00180-3

    Article  CAS  Google Scholar 

  94. Chuang F-C, Wang CZ, Ho KH (2006) Structure of neutral aluminum clusters Aln (2 ≤ n ≤ 23): genetic algorithm tight-binding calculations. Phys Rev B 73:125431. https://doi.org/10.1103/PhysRevB.73.125431

    Article  CAS  Google Scholar 

  95. Kumar V, Bhattacharjee S, Kawazoe Y (2000) Silicon-doped icosahedral, cuboctahedral, and decahedral clusters of aluminum. Phys Rev B 61:8541–8547. https://doi.org/10.1103/PhysRevB.61.8541

    Article  CAS  Google Scholar 

  96. Rao BK, Khanna SN, Jena P (2000) Isomers of Al13 clusters and their interaction with alkali atoms. Phys Rev B 62:4666–4671. https://doi.org/10.1103/PhysRevB.62.4666

    Article  CAS  Google Scholar 

  97. Sosa-Hernández EM, Montejano-Carrizales JM, Alvarado-Leyva PG (2017) Global minimum structures, stability and electronic properties of small FexCuy (x + y ≤ 5) bimetallic clusters: a DFT study. Eur Phys J D 71:284. https://doi.org/10.1140/epjd/e2017-80376-2

    Article  CAS  Google Scholar 

  98. Pansini FNN, de Campos M, Neto AC, Sergio CS (2020) Theoretical study of the electronic structure and electrical properties of Al-doped niobium clusters. Chem Phys 535:110778. https://doi.org/10.1016/j.chemphys.2020.110778

    Article  CAS  Google Scholar 

  99. Varas A, Aguilera-Granja F, Rogan J, Kiwi M (2016) Structural, electronic, and magnetic properties of FexCoyPdz (x + y + z ≤ 7) clusters: a density functional theory study. J Nanoparticle Res 18:252. https://doi.org/10.1007/s11051-016-3554-3

    Article  CAS  Google Scholar 

  100. De HS, Krishnamurty S, Mishra D, Pal S (2011) Finite temperature behavior of gas phase neutral Aun (3 ≤ n ≤ 10) clusters: a first principles investigation. J Phys Chem C 115:17278–17285. https://doi.org/10.1021/jp2023605

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Hong Yao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 268 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, C.H., Li, Y.D. Evolution of the structural and electronic properties of AlnP13−n (n = 0–13) clusters. Theor Chem Acc 141, 53 (2022). https://doi.org/10.1007/s00214-022-02912-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-022-02912-7

Keywords

Navigation