Skip to main content
Log in

Density functional study of structural and electronic properties of Al n P (2 ≤ n ≤ 12) clusters

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Low-lying equilibrium geometric structures of Phosphorus-doped aluminum cluster Al n P (n = 2–12) clusters obtained by an all-electron linear combination of atomic orbital approach, within spin-polarized density functional theory, are reported. The binding energy, dissociation energy, and stability of these clusters are studied within the local spin density approximation (LSDA) and the three-parameter hybrid generalized gradient approximation (GGA) due to Becke-Lee-Yang-Parr (B3LYP). Ionization potentials, electron affinities, hardness, and static polarizabilities are calculated for the ground-state structures within the GGA. It is observed that symmetric structures with the P atom occupying a peripheral position are lowest-energy geometries of Al n P (n = 2, 4–11), while the P impurities of Al3P and Al12P prefer to occupy internal sites in the aluminum clusters. Generalized gradient approximation extends bond lengths as compared to the LSDA lengths. The odd-even oscillations in the dissociation energy, the second differences in energy, the HOMO–LUMO gaps, the ionization potential, the electron affinity, and the hardness are more pronounced within both GGA and LSDA. The stability analysis based on the energies clearly shows the clusters with an even number of valence electrons are more stable than clusters with odd number of valence electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akola J, Hakkinen H, Manninen M (1998) Ionization potential of aluminum clusters. Phys Rev B 58(7):3601–3604

    Article  CAS  Google Scholar 

  • Akola J, Manninen M, Hakkinen H, Landman U, Li X, Wang LS (2000) Aluminum cluster anions: photoelectron spectroscopy and ab initio simulations. Phys Rev B 62(19):13216–13228

    Article  CAS  Google Scholar 

  • Akutsu M, Koyasu K, Atobe J, Hosoya N, Miyajima K, Mitsui M, Nakajima A (2006) Experimental and theoretical characterization of aluminum-based binary superatoms of Al12X and their cluster salts. J Phys Chem A 110(44):12073–12076

    Article  CAS  Google Scholar 

  • Archibong EF, St-Amant A (2002) Structure and electron detachment energies of Al3P and Al3P 3 . J Phys Chem A 106(24):5932–5937

    Article  CAS  Google Scholar 

  • Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38(6):3098–3100

    Article  CAS  Google Scholar 

  • Ceperley MD, Alder B (1980) Ground state of the electron gas by a stochastic method. J Phys Rev Lett 45(7):566–569

    Article  CAS  Google Scholar 

  • Deshpande MD, Kanhere DG, Vasiliev I, Martin RM (2003) Ab initio absorption spectra of Aln (n = 2–13) clusters. Phys Rev B 68(3):035428–035432

    Article  Google Scholar 

  • Dhavale A, Kanhere DG (2002) Density-functional investigation of the size dependence of the electronic structure of mixed aluminum-sodium clusters. Phys Rev B 65(8):085402

    Google Scholar 

  • Feng PY, Balasubramanian K (1999) Electronic states of Al3P and AlP3 and their positive ions. Chem Phys Lett 301(5):458–466

    Article  CAS  Google Scholar 

  • Feng PY, Balasubramanian K (2000) Potential energy surfaces of electronic states of AlP2, Al2P and their ions. Chem Phys Lett 318(5):417–426

    Article  CAS  Google Scholar 

  • Francl MM, Petro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pole JA (1982) Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J Chem Phys 77(7):3654–3665

    Article  CAS  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, et al., Computer code GAUSSIAN98, revision A.6 (Gaussian, Inc., Pittsburgh, PA, 1998)

  • Gantefor G, Meiwes-Broer KH, Lutz HO (1988) Photodetachment spectroscopy of cold aluminum cluster anions. Phys Rev A 37(7):2716–2718

    Article  Google Scholar 

  • Gomez H, Taylor TR, Neumark DM (2001) Anion photoelectron spectroscopy of aluminum phosphide clusters. J Phys Chem A 105(28):6886–6893

    Article  CAS  Google Scholar 

  • Guo L, Wu H, Jin Z (2004) First principles study of the structure, electronic state and stability of AlnP +m cations. J Mol Struct (THEOCHEM) 680(2):121–126

    Article  CAS  Google Scholar 

  • Guo L, Wu H, Jin Z (2005) The aluminum phosphides Al m P n (m + n = 2–5) and their anions: structures, electron affinities and vibrational frequencies. Int J Mass Spectrom 240(2):149–159

    Article  CAS  Google Scholar 

  • Hanley L, Ruatta SA, Anderson SL (1987) Collision-induced dissociation of aluminum cluster ions: fragmentation patterns, bond energies, and structures for Al +2 –Al +7 . J Chem Phys 87(1):260–268

    Article  CAS  Google Scholar 

  • Jaque P, Toro-Labbe A (2002) Characterization of copper clusters through the use of density functional theory reactivity descriptors. J Chem Phys 117(7):3208–3218

    Article  CAS  Google Scholar 

  • Jarrold MF, Bower JE, Kraus JS (1987) Collison induced dissociation of metal cluster ions: bare aluminum clusters, Al +n (3–26). J Chem Phys 86(7):3876–3885

    Article  CAS  Google Scholar 

  • Jones RO, Gunnarsson O (1989) The density functional formalism, its applications and prospects. Rev Mod Phys 61(3):689–746

    Article  CAS  Google Scholar 

  • Jones RO (1993) Simulated annealing study of neutral and charged clusters: Aln and Gan. J Chem Phys 99(2):1194–1206

    Article  CAS  Google Scholar 

  • Khanna SN, Ashman C, Rao BK, Jena P (2001) Geometry, electronic structure, and energetic of copper-doped aluminum clusters. J Chem Phys 114(8):9792–9796

    Article  CAS  Google Scholar 

  • Knight WD, Clemenger K, De Heer WA, Saunders WA, Chou MY, Cohen L (1984) Electronic shell structure and abundances of sodium clusters. Phys Rev Lett 52(24):2141–2143

    Article  CAS  Google Scholar 

  • Kumar V, Bhattacharjee S, Kawazoe Y (2000) Silicon-doped icosahedral, cuboctahedral, and decahedral clusters of aluminum. Phys Rev B 61(12):8541–8547

    Article  CAS  Google Scholar 

  • Lee C, Yang W, Parr RG (1988) Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789

    Article  CAS  Google Scholar 

  • Leuchtner RE, Harms AC, Castleman AW Jr (1991) Aluminum cluster reaction. J Chem Phys 94(2):1093–1101

    Article  CAS  Google Scholar 

  • Liu ZY, Wang CR, Huang RB, Zheng LS (1995) Mass distributions of binary aluminum cluster anions AlnX m (X = O, S, P, As, C). Int J Mass Spectrom 141(3):201–208

    Article  CAS  Google Scholar 

  • Majumder C, Das GP, Kulshrestha SK, Shah V, Kanhere DG (1996) Ground state geometries and energetics of ALnLi (n = 1, 13) clusters using ab initio density-based molecular dynamics. Chem Phys Lett 261(5):515–520

    Article  CAS  Google Scholar 

  • Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105(26):7512–7516

    Article  CAS  Google Scholar 

  • Parr RG, Chattaraj PK (1991) Principle of maximum hardness. J Am Chem Soc 113(5):1854–1855

    Article  CAS  Google Scholar 

  • Parr RG, Yang W (1989) Density functional theory of atoms, molecules. Oxford, New York

  • Pearson RG (1997) Chemical hardness: applications from molecules to solids. Wiley-VCH, Weinheim

    Google Scholar 

  • Petterson LGM, Bauschlicher CW Jr (1987) Small Al clusters. II. Structure and binding in Aln (n = 2–6, 13). J Chem Phys 87(4):2205–2213

    Article  Google Scholar 

  • Rao BK, Jena P (1999) Evolution of the electronic structure and properties of neutral and charged aluminum clusters: a comprehensive analysis. J Chem Phys 111(5):1890–1904

    Article  CAS  Google Scholar 

  • Rao BK, Jena P (2001) Energetic and electronic structure of carbon doped aluminum clusters. J Chem Phys 115(2):778–783

    Article  CAS  Google Scholar 

  • Rothlisberger U, Andreoni W (1992) Structural and electronic properties of sodium microclusters (n = 2–20) at low and high temperatures: new insights from ab initio molecular dynamics studies. J Chem Phys 94(12):8129–8151

    Article  Google Scholar 

  • Saunders WA, Fayet P, Woste L (1989) Photodestruction of positively and negatively charged aluminum-cluster ions. Phys Rev A 39(9):4400–4405

    Article  CAS  Google Scholar 

  • Thomas OC, Zheng WJ, Lippa TP, Xu SJ, Lyapustina SA (2001) In search of theoretically predicted magic clusters: lithium-doped aluminum cluster anions. J Chem Phys 114(8):9895–9900

    Article  CAS  Google Scholar 

  • Turner GW, Johnston RL, Wilso NT (2000) Investigation of geometric shell aluminum clusters using the gupta many-body potential. J Chem Phys 112(10):4773–4778

    Article  CAS  Google Scholar 

  • Upton TH (1987) Aperturbed electron droplet model for the electronic structure of small aluminum clusters. J Chem Phys 86(12):7054–7064

    Article  CAS  Google Scholar 

  • Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 20603021), Youth Foundation of Shanxi (2007021009) and the Youth Academic Leader of Shanxi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, L., Wu, H. Density functional study of structural and electronic properties of Al n P (2 ≤ n ≤ 12) clusters. J Nanopart Res 10, 341–351 (2008). https://doi.org/10.1007/s11051-007-9258-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-007-9258-y

Keywords

Navigation