Skip to main content
Log in

On the relevance of the electron density analysis for the study of micro-hydration and its impact on the formation of a peptide-like bond

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The formation of a peptide bond from carboxylic acid and amine from the reactants taken separately in the gas phase with no catalytic surface constitutes an interesting process from an exobiological point of view. We investigated the reaction between acetic acid (CH3–COOH) and methylamine (CH3–NH2), alone and with the presence of one to five water molecules, at the LC-ωPBE/6-311++G(d,p) level of theory, with the GD3BJ Empirical Dispersion. Starting from the idea that the reaction begins with the formation of a non-covalent complex between the reagents, we first identified the main structures of non-covalent complexes that can be formed between both reagents without hydration, by maximizing interactions between complementary sites of both partners. This study led to the identification of a (CH3–COOH):(CH3–NH2) complex, with a stabilization energy of 14.22 kJ/mol, that may correspond to a preliminary step towards the formation of a peptide-like bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Perez JE, Kumar M, Francisco JS, Sinha A (2017) Oxygenate-induced tuning of aldehyde-amine reactivity and its atmospheric implications. J Phys Chem A 121(5):1022–1031

    Article  CAS  PubMed  Google Scholar 

  2. Dong ZG, Xu F, Long B (2018) The energetics and kinetics of the CH3CHO+(CH3) 2NH/CH3NH2 reactions catalyzed by a single water molecule in the atmosphere. Comput Theor Chem 1140:7–13

    Article  CAS  Google Scholar 

  3. Louie MK, Francisco JS, Verdicchio M, Klippenstein SJ, Sinha A (2016) Dimethylamine addition to formaldehyde catalyzed by a single water molecule: a facile route for atmospheric carbinolamine formation and potential promoter of aerosol growth. J Phys Chem A 120(9):1358–1368

    Article  CAS  PubMed  Google Scholar 

  4. Riffet V, Frison G, Bouchoux G (2018) Quantum-chemical modeling of the first steps of the Strecker synthesis: from the gas-phase to water solvation. J Phys Chem A 122(6):1643–1657

    Article  CAS  PubMed  Google Scholar 

  5. Tan XF, Zhang L, Long B (2020) New mechanistic pathways for the formation of organosulfates catalyzed by ammonia and carbinolamine formation catalyzed by sulfuric acid in the atmosphere. Phys Chem Chem Phys 22(16):8800–8807

    Article  CAS  PubMed  Google Scholar 

  6. Liu JY, Long ZW, Mitchell E, Long B (2021) New mechanistic pathways for the reactions of formaldehyde with formic acid catalyzed by sulfuric acid and formaldehyde with sulfuric acid catalyzed by formic acid: formation of potential secondary organic aerosol precursors. ACS Earth Space Chem 5(6):1363–1372

    Article  CAS  Google Scholar 

  7. Galloway MM, Powelson MH, Sedehi N, Wood SE, Millage KD, Kononenko JA, Rynaski AD, De Haan DO (2014) Secondary organic aerosol formation during evaporation of droplets containing atmospheric aldehydes, amines, and ammonium sulfate. Environ Sci Technol 48(24):14417–14425

    Article  CAS  PubMed  Google Scholar 

  8. Dong ZG, Xu F, Mitchell E, Long B (2021) Trifluoroacetaldehyde aminolysis catalyzed by a single water molecule: an important sink pathway for trifluoroacetaldehyde and a potential pathway for secondary organic aerosol growth. Atmos Environ 249:118242

    Article  CAS  Google Scholar 

  9. Colzi L, Rivilla VM, Beltrán MT, Jiménez-Serra I, Mininni C, Melosso M, Cesaroni R, Fontani F, Lorenzani A, Sanchez-Monge A et al (2021) The GUAPOS project II. A comprehensive study of peptide-like bond molecules. arXiv preprint arXiv:2107.11258

  10. Georgelin T, Jaber M, Bazzi H, Lambert JF (2013) Formation of activated biomolecules by condensation on mineral surfaces–a comparison of peptide bond formation and phosphate condensation. Origins Life Evol Biospheres 43(4):429–443

    Article  CAS  Google Scholar 

  11. Rimola A, Tosoni S, Sodupe M, Ugliengo P (2006) Does silica surface catalyse peptide bond formation? New Insights from First-Principles Calculations. ChemPhysChem 7(1):157–163

    Article  CAS  PubMed  Google Scholar 

  12. Rimola A, Sodupe M, Ugliengo P (2019) Role of mineral surfaces in prebiotic chemical evolution. In silico quantum mechanical studies. Life 9(1):10

    Article  CAS  PubMed Central  Google Scholar 

  13. Georgelin T, Akouche M, Jaber M, Sakhno Y, Matheron L, Fournier F, Méthivier C, Martra G, Lambert JF (2017) Iron (III) oxide nanoparticles as catalysts for the formation of linear glycine peptides. Eur J Inorg Chem 2017(1):198–211

    Article  CAS  Google Scholar 

  14. Tielens F, Gierada M, Handzlik J, Calatayud M (2020) Characterization of amorphous silica based catalysts using DFT computational methods. Catal Today 354:3–18

    Article  CAS  Google Scholar 

  15. Pantaleone S, Ugliengo P, Sodupe M, Rimola A (2018) When the surface matters: prebiotic peptide-bond formation on the TiO2 (101) anatase surface through periodic DFT-D2 simulations. Chem Eur J 24:16292–16301

    Article  CAS  PubMed  Google Scholar 

  16. Rufino VC, Pliego JR Jr (2020) The role of carboxylic acid impurity in the mechanism of the formation of aldimines in aprotic solvents. Comput Theor Chem 1191:113053

    Article  CAS  Google Scholar 

  17. Parr RG, Yang W (1995) Density-functional theory of the electronic structure of molecules. Annu Rev Phys Chem 46(1):701–728

    Article  CAS  PubMed  Google Scholar 

  18. Parr RG, Yang W (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106(14):4049–4050

    Article  CAS  Google Scholar 

  19. Chermette H (1999) Chemical reactivity indexes in density functional theory. J Comput Chem 20:129–154

    Article  CAS  Google Scholar 

  20. Politzer P, Murray JS (2020) Electrostatics and polarization in σ-and π-hole noncovalent interactions: an overview. ChemPhysChem 21(7):579–588

    Article  CAS  PubMed  Google Scholar 

  21. Politzer P, Murray JS, Clark T (2019) Explicit inclusion of polarizing electric fields in σ-and π-hole interactions. J Phys Chem A 123(46):10123–10130

    Article  CAS  PubMed  Google Scholar 

  22. Frontera A, Bauzá A (2017) Concurrent aerogen bonding and lone pair/anion–π interactions in the stability of organoxenon derivatives: a combined CSD and ab initio study. Phys Chem Chem Phys 19(44):30063–30068

    Article  CAS  PubMed  Google Scholar 

  23. Bijina PV, Suresh CH (2020) Molecular electrostatic potential reorganization theory to describe positive cooperativity in noncovalent trimer complexes. J Phys Chem A 124(11):2231–2241

    Article  CAS  PubMed  Google Scholar 

  24. Anjali BA, Suresh CH (2020) Absorption and emission properties of 5-phenyl tris (8-hydroxyquinolinato) M (III) complexes (M= Al, Ga, In) and correlations with molecular electrostatic potential. J Comput Chem 41(16):1497–1508

    Article  CAS  PubMed  Google Scholar 

  25. Sosorev A, Dominskiy D, Chernyshov I, Efremov R (2020) Tuning of molecular electrostatic potential enables efficient charge transport in crystalline azaacenes: a computational study. Int J Mol Sci 21(16):5654

    Article  CAS  PubMed Central  Google Scholar 

  26. Gadre SR, Suresh CH, Mohan N (2021) Electrostatic potential topology for probing molecular structure, bonding and reactivity. Molecules 26(11):3289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pundlik SS, Gadre SR (1997) Structure and stability of DNA base trimers: an electrostatic approach. J Phys Chem B 101(46):9657–9662

    Article  CAS  Google Scholar 

  28. Gadre SR, Bhadane PK (1997) Patterns in hydrogen bonding via electrostatic potential topography. J Chem Phys 107(14):5625–5626

    Article  CAS  Google Scholar 

  29. Mohan N, Suresh CH, Kumar A, Gadre SR (2013) Molecular electrostatics for probing lone pair–π interactions. Phys Chem Chem Phys 15(42):18401–18409

    Article  CAS  PubMed  Google Scholar 

  30. Gadre SR, Kumar A (2015) Understanding lone pair-π interactions from electrostatic viewpoint. In: Noncovalent forces. Springer, Cham, pp 391–418

  31. Kulkarni AD, Babu K, Gadre SR, Bartolotti LJ (2004) Exploring hydration patterns of aldehydes and amides: Ab initio investigations. J Phys Chem A 108(13):2492–2498

    Article  CAS  Google Scholar 

  32. Ayers PW (2001) Strategies for computing chemical reactivity indices. Theoret Chem Acc 106(4):271–279

    Article  CAS  Google Scholar 

  33. Geerlings P, Ayers PW, Toro-Labbé A, Chattaraj PK, De Proft F (2012) The Woodward–Hoffmann rules reinterpreted by conceptual density functional theory. Acc Chem Res 45(5):683–695

    Article  CAS  PubMed  Google Scholar 

  34. Geerlings P et al (2020) Conceptual density functional theory: status, prospects, issues. Theoret Chem Acc 139(2):1–18

    Article  CAS  Google Scholar 

  35. Bacchus-Montabonel MC, Calvo F (2015) Nanohydration of uracil: emergence of three-dimensional structures and proton-induced charge transfer. Phys Chem Chem Phys 17:9629–9633

    Article  CAS  PubMed  Google Scholar 

  36. Pérez C, Neill JL, Muckle MT, Zaleski DP, Peña I, Lopez JC, Pate BH (2015) Water–water and water–solute interactions in microsolvated organic complexes. Angew Chem Int Ed 54(3):979–982

    Article  CAS  Google Scholar 

  37. Blanco S, Pinacho P, López JC (2017) Structure and dynamics in formamide–(H2O) 3: A Water Pentamer Analogue. J Phys Chem Lett 8(24):6060–6066

    Article  CAS  PubMed  Google Scholar 

  38. Gruet S, Pérez C, Steber AL, Schnell M (2018) Where’s water? The many binding sites of hydantoin. Phys Chem Chem Phys 20(8):5545–5552

    Article  CAS  PubMed  Google Scholar 

  39. Derbali I, Thissen R, Alcaraz C, Romanzin C, Zins EL (2021) Study of the Reactivity of CH3COOH+ and COOH+ Ions With CH3NH2: evidence of the Formation of New Peptide-like C(O)-N Bonds. Manuscript No.: jp-2021-06630q Accepted for publication in J Phys Chem A

  40. Sun F, Xie M, Zhang Y, Song W, Sun X, Hu Y (2021) Spectroscopic evidence of the C–N covalent bond formed between two interstellar molecules (ISM): acrylonitrile and ammonia. Phys Chem Chem Phys

  41. Jeanvoine Y, Largo A, Hase WL, Spezia R (2018) Gas phase synthesis of protonated glycine by chemical dynamics simulations. J Phys Chem A 122(3):869–877

    Article  CAS  PubMed  Google Scholar 

  42. Scuderi D, Pérez-Mellor A, Lemaire J, Indrajith S, Bardaud JX, Largo A, Jeanvoine Y, Spezia R (2020) Infrared-Assisted Synthesis of Prebiotic Glycine. ChemPhysChem 21(6):503–509

    Article  CAS  PubMed  Google Scholar 

  43. Enrique-Romero J, Rimola A, Ceccarelli C, Ugliengo P, Balucani N, Skouteris D (2019) Reactivity of HCO with CH3 and NH2 on water ice surfaces. A comprehensive accurate quantum chemistry study. ACS Earth Space Chem 3(10):2158–2170

    Article  CAS  Google Scholar 

  44. van der Rest G, Jensen LB, Azeim SA, Mourgues P, Audier HE (2004) Reactions of [NH3, H2O] with carbonyl compounds: a McLafferty rearrangement within a complex? J Am Soc Mass Spectrom 15(7):966–971

    Article  PubMed  CAS  Google Scholar 

  45. van der Rest G, Mourgues P, Nedev H, Audier HE (2002) A prototype for catalyzed amide bond cleavage: production of the [NH3, H2O]•+ dimer from ionized formamide and its carbene isomer. J Am Chem Soc 124(19):5561–5569

    Article  PubMed  CAS  Google Scholar 

  46. Politzer P, Murray JS (2018) The Hellmann–Feynman theorem: a perspective. J Mol Model 24(9):266

    Article  PubMed  Google Scholar 

  47. Bader RF, Carroll MT, Cheeseman JR, Chang C (1987) Properties of atoms in molecules: atomic volumes. J Am chem Soc 109(26):7968–7979

    Article  CAS  Google Scholar 

  48. Politzer P, Murray JS, Clark T (2015) Mathematical modeling and physical reality in noncovalent interactions. J Mol Model 21(3):1–10

    Article  CAS  Google Scholar 

  49. Herbert JM (2021) Neat, simple, and wrong: debunking electrostatic fallacies regarding noncovalent interactions. J Phys Chem A

  50. Gadre SR, Babu K, Rendell AP (2000) Electrostatics for exploring hydration patterns of molecules. 3. Uracil. J Phys Chem A 104(39):8976–8982

    Article  CAS  Google Scholar 

  51. Sivanesan D, Babu K, Gadre SR, Subramanian V, Ramasami T (2000) Does a stacked DNA base pair hydrate better than a hydrogen-bonded one? An ab initio study. J Phys Chem A 104(46):10887–10894

    Article  CAS  Google Scholar 

  52. Güssregen S, Matter H, Hessler G, Müller M, Schmidt F, Clark T (2012) 3D-QSAR based on quantum-chemical molecular fields: toward an improved description of halogen interactions. J Chem Inf Model 52(9):2441–2453

    Article  PubMed  CAS  Google Scholar 

  53. El Kerdawy A, Güssregen S, Matter H, Hennemann M, Clark T (2013) Quantum mechanics-based properties for 3D-QSAR. J Chem Inf Model 53(6):1486–1502

    Article  PubMed  CAS  Google Scholar 

  54. El Kerdawy A, Wick CR, Hennemann M, Clark T (2012) Predicting the sites and energies of noncovalent intermolecular interactions using local properties. J Chem Inf Model 52(4):1061–1071

    Article  PubMed  CAS  Google Scholar 

  55. Gaussian 09, Revision D.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian, Inc., Wallingford CT

  56. Vydrov OA, Scuseria GE (2006) Assessment of a long-range corrected hybrid functional. J Chem Phys 125(23):234109

    Article  PubMed  CAS  Google Scholar 

  57. Vydrov OA, Heyd J, Krukau AV, Scuseria GE (2006) Importance of short-range versus long-range Hartree–Fock exchange for the performance of hybrid density functionals. J Chem Phys 125(7):074106

    Article  PubMed  CAS  Google Scholar 

  58. Vydrov OA, Scuseria GE, Perdew JP (2007) Tests of functionals for systems with fractional electron number. J Chem Phys 126(15):154109

    Article  PubMed  CAS  Google Scholar 

  59. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32(7):1456–1465

    Article  CAS  PubMed  Google Scholar 

  60. Krishnan RBJS, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72(1):650–654

    Article  CAS  Google Scholar 

  61. Goerigk L, Kruse H, Grimme S (2011) Benchmarking density functional methods against the S66 and S66x8 datasets for non-covalent interactions. ChemPhysChem 12(17):3421–3433

    Article  CAS  PubMed  Google Scholar 

  62. DiLabio GA, Johnson ER, Otero-de-la-Roza A (2013) Performance of conventional and dispersion-corrected density-functional theory methods for hydrogen bonding interaction energies. Phys Chem Chem Phys 15(31):12821–12828

    Article  CAS  PubMed  Google Scholar 

  63. Bader RF, Streitwieser A, Neuhaus A, Laidig KE, Speers P (1996) Electron delocalization and the Fermi hole. J Am Chem Soc 118(21):4959–4965

    Article  CAS  Google Scholar 

  64. Wick CR, Clark T (2018) On bond-critical points in QTAIM and weak interactions. J Mol Model 24(6):1–9

    Article  Google Scholar 

  65. Jabłoński M (2020) Counterintuitive bond paths: an intriguing case of the C (NO2) 3-ion. Chem Phys Lett 759:137946

    Article  CAS  Google Scholar 

  66. Jabłoński M (2019) On the uselessness of bond paths linking distant atoms and on the violation of the concept of privileged exchange channels. ChemistryOpen 8(4):497

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Suvitha A, Venkataramanan NS, Sahara R, Kawazoe Y (2019) A theoretical exploration of the intermolecular interactions between resveratrol and water: a DFT and AIM analysis. J Mol Model 25(3):1–11

    Article  CAS  Google Scholar 

  68. Venkataramanan NS, Suvitha A, Kawazoe Y (2017) Intermolecular interaction in nucleobases and dimethyl sulfoxide/water molecules: A DFT, NBO, AIM and NCI analysis. J Mol Graph Model 78:48–60

    Article  CAS  PubMed  Google Scholar 

  69. Sathiyamoorthy VN (2021) Electronic structure, stability, and cooperativity of chalcogen bonding in sulfur dioxide and hydrated sulfur dioxide clusters: a DFT study and wave functional analysis

  70. Grabowski SJ, Leszczynski J (2009) The enhancement of X-H⋯ π hydrogen bond by cooperativity effects–Ab initio and QTAIM calculations. Chem Phys 355(2–3):169–176

    Article  CAS  Google Scholar 

  71. Derbali I, Zins EL, Alikhani ME (2019) What is the hydrophobic interaction contribution to the stabilization of micro-hydrated complexes of trimethylamine oxide (TMAO)? A joint DFT-D, QTAIM, and MESP study. J Mol Model 25(12):1–14

    Article  CAS  Google Scholar 

  72. Zins EL (2020) Microhydration of a carbonyl group: how does the molecular electrostatic potential (MESP) impact the formation of (H2O) n:(R2C═ O) complexes? J Phys Chem A 124(9):1720–1734

    Article  CAS  PubMed  Google Scholar 

  73. Gao J, Seifert NA, Jäger W (2019) A microwave spectroscopic and ab initio study of keto–enol tautomerism and isomerism in the cyclohexanone–water complex. Phys Chem Chem Phys 21(24):12872–12880

    Article  CAS  PubMed  Google Scholar 

  74. Weinhold F, Klein RA (2012) What is a hydrogen bond? Mutually consistent theoretical and experimental criteria for characterizing H-bonding interactions. Mol Phys 110(9–10):565–579

    Article  CAS  Google Scholar 

  75. Akman F, Issaoui N, Kazachenko AS (2020) Intermolecular hydrogen bond interactions in the thiourea/water complexes (Thio-(H 2 O) n)(n= 1,…, 5): X-ray, DFT, NBO, AIM, and RDG analyses. J Mol Model 26:1–16

    Article  CAS  Google Scholar 

  76. Grabowski SJ (2020) Triel bond and coordination of triel centres–Comparison with hydrogen bond interaction. Coord Chem Rev 407:213171

    Article  CAS  Google Scholar 

  77. Scheiner S, Michalczyk M, Wysokiński R, Zierkiewicz W (2020) Structures and energetics of clusters surrounding diatomic anions stabilized by hydrogen, halogen, and other noncovalent bonds. Chem Phys 530:110590

    Article  CAS  Google Scholar 

  78. Gholami S, Aarabi M, Grabowski SJ (2021) Coexistence of intra-and intermolecular hydrogen bonds: salicylic acid and salicylamide and their thiol counterparts. J Phys Chem A 125(7):1526–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hobza P, Müller-Dethlefs K (2010) Non-covalent interactions: theory and experiment (No. 2). Royal Society of Chemistry

  80. Gadre SR, Yeole SD, Sahu N (2014) Chem Rev 114:12132–12173

    Article  CAS  PubMed  Google Scholar 

  81. Murray JS, Sen K (1996) Molecular electrostatic potentials: concepts and applications. Elsevier Science, Amsterdam

    Google Scholar 

  82. Kolar MH, Hobza P (2016) Computer modeling of halogen bonds and other σ-hole interactions. Chem Rev 116(9):5155–5187

    Article  CAS  PubMed  Google Scholar 

  83. Bauzá A, Mooibroek TJ, Frontera A (2015) The bright future of unconventional σ/π-hole interactions. ChemPhysChem 16(12):2496–2517

    Article  PubMed  CAS  Google Scholar 

  84. Remya K, Suresh CH (2015) Non-covalent intermolecular carbon–carbon interactions in polyynes. Phys Chem Chem Phys 17(40):27035–27044

    Article  CAS  PubMed  Google Scholar 

  85. Lv SS, Liu YR, Huang T, Feng YJ, Jiang S, Huang W (2015) Stability of hydrated methylamine: structural characteristics and H2N··· H–O hydrogen bonds. J Phys Chem A 119(16):3770–3779

    Article  CAS  PubMed  Google Scholar 

  86. Krishnakumar P, Maity DK (2017) Microhydration of neutral and charged acetic acid. J Phys Chem A 121(2):493–504

    Article  CAS  PubMed  Google Scholar 

  87. Kang NS, Kang YK (2017) Assessment of CCSD (T), MP2, and DFT methods for the calculations of structures and interaction energies of the peptide backbone with water molecules. Chem Phys Lett 687:23–30

    Article  CAS  Google Scholar 

  88. Calvo F, Bacchus-Montabonel MC (2018) Size-induced segregation in the stepwise microhydration of hydantoin and its role in proton-induced charge transfer. J Phys Chem A 122(6):1634–1642

    Article  CAS  PubMed  Google Scholar 

  89. Calvo F, Bacchus-Montabonel MC, Clavaguéra C (2016) Stepwise hydration of 2-aminooxazole: theoretical insight into the structure, finite temperature behavior and proton-induced charge transfer. J Phys Chem A 120(15):2380–2389

    Article  CAS  PubMed  Google Scholar 

  90. Kalai C, Zins EL, Alikhani ME (2017) A theoretical investigation of water–solute interactions: from facial parallel to guest–host structures. Theoret Chem Acc 136(4):48

    Article  CAS  Google Scholar 

  91. Derbali I, Thissen R, Alcaraz C, Romanzin C, Zins EL Study of the reactivity of CH3COOH+• and COOH+ ions with CH3NH2: Evidence of the formation of new peptide C(O)-N bonds. Submitted for publication in the Journal of Physical Chemistry A.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilie-Laure Zins.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 23751 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derbali, I., Aroule, O., Hoffmann, G. et al. On the relevance of the electron density analysis for the study of micro-hydration and its impact on the formation of a peptide-like bond. Theor Chem Acc 141, 34 (2022). https://doi.org/10.1007/s00214-022-02893-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-022-02893-7

Keywords

Navigation