Skip to main content
Log in

Adsorption mechanism and performance analysis of alkaloids as green corrosion inhibitors on mild steel

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Adsorption mechanism and inhibitive performances of alkaloids on mild steel are studied using density functional theory (DFT). Global reactivity parameters such as global hardness (ɳ), fraction of electron transfer from molecule to metal (∆N), and dipole moment (μ) are calculated to determine corrosion protection efficiency. Periodic DFT calculations show bonding interactions between heteroatoms of alkaloid and Fe atom of Fe(110) surface. Fe–-H non-classical bond formations are also observed. The order of adsorption energy (Eads) is quinine (86.6 kcal/mol) > cytisine (67.6 kcal/mol) ≈ mescaline > ephedrine > morphine ≈ atropine > nicotine > caffeine > tryptamine > codeine (50.2 kcal/mol). Highest Eads value of quinine is interpreted with its very favourable orbital energies that help to form chemical bonds via electron donation and back donation. These high Eads values confirmed chemisorption process and interpreted strong inhibition efficiencies of morphine and caffeine on mild steel as reported in experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The structure information of the model systems can be obtained from the authors upon request.

References

  1. Ameer MA, Khamis E, Al-Senani G (2000) Adsorpt Sci Technol 18:177

    Article  CAS  Google Scholar 

  2. Bera S, Rout TK, Udayabhanu G, Narayan R (2015) Comparative study of corrosion protection of sol-gel coatings with different organic functionality on Al-2024 substrate. Prog Org Coat 88:293–303

    Article  CAS  Google Scholar 

  3. Bera S, Rout TK, Udayabhanu G, Narayan R (2016) Water-based & eco-friendly epoxy-silane hybrid coating for enhanced corrosion protection & adhesion on galvanized steel. Prog Org Coat 101:24–44

    Article  CAS  Google Scholar 

  4. Cadar E, Tomescu A, Erimia C, Mustafa A, Sirbu R (2015) The impact of alkaloids structures from naturalcompounds on public health. Eur Soc Sci Res 5:34–39

    Article  Google Scholar 

  5. Chakraborty T, Gazi K, Ghosh DC (2010) Computation of the atomic radii through the conjoint action of the effective nuclear charge and the ionization energy. Mol Phys 108:2081–2092

    Article  CAS  Google Scholar 

  6. Chattaraj PK, Sarkar U, Roy DR (2006) Electrophilicity index. Chem Rev 106:2065–2091

    Article  CAS  PubMed  Google Scholar 

  7. Costa D, Ribeiro T, Cornette P, Marcus P (2016) DFT modeling of corrosion inhibition by organic molecules: carboxylates as inhibitors of aluminum corrosion. J Phys Chem C 120:28607–28616

    Article  CAS  Google Scholar 

  8. Davey WP (1925) Precision measurements of the lattice constants of twelve common metals. Phys Rev 25:753–761

    Article  CAS  Google Scholar 

  9. de Souza FS, Giacomelli C, Gonçalves RS, Spinelli A (2012) Adsorption behavior of caffeine as a green corrosion inhibitor for copper. Mater Sci Eng, C 32:2436–2444

    Article  CAS  Google Scholar 

  10. Dennis RV, Patil V, Andrews JL, Aldinger JP, Yadav GD, Banerjee S (2015) Hybrid nanostructured coatings for corrosion protection of base metals: a sustainability perspective. Mater Res Exp 2:032001

    Article  CAS  Google Scholar 

  11. Espinoza-Vázquez A, Rodríguez-Gómez FJ (2016) Caffeine and nicotine in 3% NaCl solution with CO2 as corrosion inhibitors for low carbon steel. RSC Adv 6:70226–70236

    Article  Google Scholar 

  12. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16 Rev. C.01. Wallingford, CT

  13. Gece G, Bilgiç S (2010) A theoretical study of some hydroxamic acids as corrosion inhibitors for carbon steel. Corros Sci 52:3304–3308

    Article  CAS  Google Scholar 

  14. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    Article  CAS  PubMed  Google Scholar 

  15. Guin AK, Nayak SK, Rout TK, Bandyopadhyay N, Sengupta DK (2012) Corrosion behavior of nanohybrid titania–silica composite coating on phosphated steel sheet. J Coat Technol Res 9:97–106

    Article  CAS  Google Scholar 

  16. Hashimoto H, Fukuda T, Tobita H, Ray M, Sakaki S (2012) Formation of a germylyne complex: dehydrogenation of a hydrido(hydrogermylene)tungsten complex with mesityl isocyanate. Angew Chem Int Ed 51:2930–2933

    Article  CAS  Google Scholar 

  17. Hu Z, Meng Y, Ma X, Zhu H, Li J, Li C, Cao D (2016) Experimental and theoretical studies of benzothiazole derivatives as corrosion inhibitors for carbon steel in 1M HCl. Corros Sci 112:563–575

    Article  CAS  Google Scholar 

  18. Koopmans T (1934) Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica 1:104–113

    Article  Google Scholar 

  19. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  20. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775

    Article  CAS  Google Scholar 

  21. Kumar D, Jain N, Jain V, Rai B (2020) Amino acids as copper corrosion inhibitors: A density functional theory approach. Appl Surf Sci 514:145905

    Article  CAS  Google Scholar 

  22. Kumar D, Jain V, Rai B (2020) Imidazole derivatives as corrosion inhibitors for copper: A DFT and reactive force field study. Corros Sci 171:108724

    Article  CAS  Google Scholar 

  23. Majd MT, Ramezanzadeh M, Bahlakeh G, Ramezanzadeh B (2020) Probing molecular adsorption/interactions and anti-corrosion performance of poppy extract in acidic environments. J Mol Liq 304:112750

    Article  CAS  Google Scholar 

  24. Mendez F, Gazquez JL (1994) Chemical reactivity of enolate ions: the local hard and soft acids and bases principle viewpoint. J Am Chem Soc 116:9298–9301

    Article  CAS  Google Scholar 

  25. Mourya P, Singh P, Tewari AK, Rastogi RB, Singh MM (2015) Relationship between structure and inhibition behaviour of quinolinium salts for mild steel corrosion: experimental and theoretical approach. Corros Sci 95:71–87

    Article  CAS  Google Scholar 

  26. Obot IB, Obi-Egbedi NO (2010) Adsorption properties and inhibition of mild steel corrosion in sulphuric acid solution by ketoconazole: Experimental and theoretical investigation. Corros Sci 52:198–204

    Article  CAS  Google Scholar 

  27. Oguzie EE, Adindu CB, Enenebeaku CK, Ogukwe CE, Chidiebere MA, Oguzie KL (2012) Natural products for materials protection: mechanism of corrosion inhibition of mild steel by acid extracts of piper guineense. The Journal of Physical Chemistry C 116:13603–13615

    Article  CAS  Google Scholar 

  28. Pearson RG (1988) Chemical hardness and bond dissociation energies. J Am Chem Soc 110:7684–7690

    Article  CAS  Google Scholar 

  29. Pearson RGPaRG, (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:5

    Google Scholar 

  30. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  31. Ray M, Nakao Y, Sato H, Sakaba H, Sakaki S (2006) Silapropargyl/silaallenyl and silylene acetylide complexes of [Cp(CO)2W]+. theoretical study of their interesting bonding nature and formation reaction. J Am Chem Soc 128:11927–11939

    Article  CAS  PubMed  Google Scholar 

  32. Ray M, Nakao Y, Sato H, Sakaki S (2007) Theoretical study of tungsten η3-Silaallyl/η3-vinylsilyl and vinyl silylene complexes: interesting bonding nature and relative stability. Organometallics 26:4413–4423

    Article  CAS  Google Scholar 

  33. Ray M, Nakao Y, Sato H, Sakaba H, Sakaki S (2009) How to stabilize η3-silapropargyl/alkynylsilyl complex of [CpL2M]+(L = CO, PMe3, or PF3 and M = W or Mo): theoretical prediction. Organometallics 28:65–73

    Article  CAS  Google Scholar 

  34. Ray M, Nakao Y, Sato H, Sakaki S, Watanabe T, Hashimoto H, Tobita H (2010) Experimental and theoretical study of a tungsten dihydride silyl complex: new insight into its bonding nature and fluxional behavior. Organometallics 29:6267–6281

    Article  CAS  Google Scholar 

  35. Ray M, Saha B, Schatz GC (2012) Theoretical studies of the O(3P) + C2 reaction at hyperthermal energies. J Phys Chem C 116:26577–26585

    Article  CAS  Google Scholar 

  36. Şahin M, Gece G, Karcı F, Bilgiç S (2008) Experimental and theoretical study of the effect of some heterocyclic compounds on the corrosion of low carbon steel in 3.5% NaCl medium. J Appl Electrochem 38:809–815

    Article  CAS  Google Scholar 

  37. Sakaba H, Oike H, Kawai M, Takami M, Kabuto C, Ray M, Nakao Y, Sato H, Sakaki S (2011) Synthesis, structure, and bonding nature of ethynediyl-bridged bis(silylene) dinuclear complexes of tungsten and molybdenum. Organometallics 30:4515–4531

    Article  CAS  Google Scholar 

  38. Sanderson RT (1983) Electronegativity and bond energy. J Am Chem Soc 105:2259–2261

    Article  CAS  Google Scholar 

  39. Sastri VS, Elboujdaini M, Perumareddi JR (2005) Utility of quantum chemical parameters in the rationalization of corrosion inhibition efficiency of some organic inhibitors. Corrosion 61:933–942

    Article  CAS  Google Scholar 

  40. Tang L, Mu G, Liu G (2003) Corros Sci 45:2251

    Article  CAS  Google Scholar 

  41. Verma C, Olasunkanmi LO, Ebenso EE, Quraishi MA, Obot IB (2016) Adsorption behavior of glucosamine-based, pyrimidine-fused heterocycles as green corrosion inhibitors for mild steel: experimental and theoretical studies. J Phys Chem C 120:11598–11611

    Article  CAS  Google Scholar 

  42. Verma C, Ebenso E, Bahadur I, Quraishi MA (2018) An overview on plant extracts as environmental sustainable and green corrosion inhibitors for metals and alloys in aggressive corrosive media. J Molecul Liquids 266:577–590

    Article  CAS  Google Scholar 

  43. Vernack E, Costa D, Tingaut P, Marcus P (2020) DFT studies of 2-mercaptobenzothiazole and 2-mercaptobenzimidazole as corrosion inhibitors for copper. Corros Sci 174:108840

    Article  CAS  Google Scholar 

  44. Wang L, Maxisch T, Ceder G (2006) Oxidation energies of transition metal oxides within the GGA+U framework. Phys Rev B 73:195107

    Article  CAS  Google Scholar 

  45. Zhang Z, Wang F, Liu Y, Wu S, Li W, Sun W, Guo D, Jiang J (2018) Molecule adsorption and corrosion mechanism of steel under protection of inhibitor in a simulated concrete solution with 3.5% NaCl. RSC Adv 8:20648–20654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors sincerely thank Tata Steel Limited, India for all support.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mausumi Ray.

Ethics declarations

Conflicts of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

214_2022_2890_MOESM1_ESM.docx

Figure S1 and Figure S2. Optimized geometries and important molecular orbitals for alkaloid molecules. Figure S3. Optimized geometries for another alkaloid molecules when they are adsorbed on Fe(110) surface in favoured configuration. Figure S4. Optimized geometries for less favoured adsorption configuration of alkaloid molecules on Fe(110) surface. (DOCX 2689 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, M., Saha, B., Rout, T.K. et al. Adsorption mechanism and performance analysis of alkaloids as green corrosion inhibitors on mild steel. Theor Chem Acc 141, 32 (2022). https://doi.org/10.1007/s00214-022-02890-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-022-02890-w

Keywords

Navigation