Skip to main content
Log in

New Xanthene Diones Compounds as a Corrosion Inhibitor of Mild Steel in Acid Medium: Electrochemical, Surface Characterization and Theoretical Insights

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Two newly synthesized inhibitors, namely 3,3,6,6-tetramethyl-9-phenyl-3,4,6,7-tetrahydro-2H-xanthenes-1,8 (5H,9H)-dione (ZM-3) and 9-(4-Bromophenyl)-3,3,6,6-tetramethl-3,4,5,6,7,9-hexahydro-2H-xanthene-1,8-dine (ZM-4) have been reported in the current study as a promising corrosion inhibitors of mild steel (MS) in 1 M HCl solution. Electrochemical experiments such as Electrochemical Impedance Spectroscopy (EIS) and Potentiodynamic Polarization measurements (PP) were performed for this aim. The quantum properties of the molecules were also calculated and analyzed using theoretical chemistry principles. Density Functional Theory was used in order to achieve this (DFT). The inhibitory action mechanism was discovered using Molecular Dynamic Simulation (MDS). The increase of the inhibitor concentration was thought to have resulted in a considerable reduction in MS corrosion rate in molar hydrochloric acid solution, with inhibitive efficiency values of 90.8 and 91.3% at 10−3 M inhibitor concentrations of ZM-3 and ZM-4, respectively. As the inhibitor concentration was increased, the inhibition effectiveness improved. Using temperatures ranging from 298 to 328 K, the effect of temperature on the corrosion behavior of MS in molar HCl at the inhibitor's optimum concentration of 10–3 was investigated. ZM-3 and ZM-4 behaved as mixed type inhibitors, according to polarization plots. The Langmuir isotherm model fit the adsorption mechanism of the evaluated inhibitors. Scanning Electron Microscopy with Energy Dispersive X-Ray Analysis (SEM/EDX), Atomic force microscopy (AFM), contact angle, and X-ray Powder Diffraction (XRD) methods were used to examine the corroded surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Galai M, Rbaa M, Ouakki M, Dahmani K, Kaya S, Arrousse DN, Dkhireche N, Briche S, Lakhrissi B, EbnTouhami M (2021) Functionalization effect on the corrosion inhibition of novel eco-friendly compounds based on 8-hydroxyquinoline derivatives: experimental, theoretical and surface treatment. Chem Phys Lett 776:138700. https://doi.org/10.1016/j.cplett.2021.138700

    Article  CAS  Google Scholar 

  2. El Faydy M, Galai M, Touir R, El Assyry A, EbnTouhami M, Benali B, Lakhrissi B, Zarrouk A (2016) Experimental and theoretical studies for steel XC38 corrosion inhibition in 1 M HCl by N-(8-hydroxyquinolin-5-yl)-methyl)-N-phenylacetamide. J Mater Environ Sci 7(4):1406–1416

    Google Scholar 

  3. Rbaaa M, Benhiba F, Galai M, Ashraf S, Abousalem M, Ouakki M, Chin-Hung L, Lakhrissi B, Jama C, Waradi I, EbnTouhamic M, Zarrouk A (2020) Synthesis and characterization of novel Cu (II) and Zn (II) complexes of 5-{[(2-Hydroxyethyl) sulfanyl] methyl}-8-hydroxyquinoline as effective acid corrosion inhibitor by experimental and computational testings. Chem Phys Lett 754:137771. https://doi.org/10.1016/j.cplett.2020.137771

    Article  CAS  Google Scholar 

  4. Ouakki M, Galai M, Rbaa M, Abousalem AS, Lakhrissi B, Rifi EH, Cherkaoui M (2020) Investigation of imidazole derivatives as corrosion inhibitors for mild steel in sulfuric acidic environment: experimental and theoretical studies. Ionics 26(10):5251–5272. https://doi.org/10.1007/s11581-020-03643-0

    Article  CAS  Google Scholar 

  5. Errahmany N, Rbaa M, Abousalem AS, Tazouti A, Galai M, Kafssaoui EHE, Touhami ME, Lakhrissi B, Touir R (2020) Experimental, DFT calculations and MC simulations concept of novel quinazolinone derivatives as corrosion inhibitor for mild steel in 1.0 M HCl medium. J Mol Liq 312:113413. https://doi.org/10.1016/j.molliq.2020.113413

    Article  CAS  Google Scholar 

  6. Alaoui K, El Kacimi Y, Galai M, Touir R, Dahmani K, Harfi A, Touhami ME (2016) Anti-corrosive properties of polyvinyl-alcohol for carbon steel in hydrochloric acid media: electrochemical and thermodynamic investigation. J Mater Environ Sci 7(7):2389–2403

    CAS  Google Scholar 

  7. RbaaM LB (2019) Novel oxazole and imidazole based on 8-hydroxyquinoline as a corrosion inhibition of mild steel in HCl solution: insights from experimental and computational studies. Surf Interfaces 15:43–59. https://doi.org/10.1016/j.surfin.2019.01.010

    Article  CAS  Google Scholar 

  8. Mostafatabar AH, Bahlakeh G, Ramezanzadeh B, Dehghani A, Ramezanzadeh M (2021) A comprehensive electronic-scale DFT modeling, atomic-level MC/MD simulation, and electrochemical/surface exploration of active nature-inspired phytochemicals based on Heracleum persicum seeds phytoextract for effective retardation of the acidic-induced c. J Mol Liq 331:115764. https://doi.org/10.1016/j.molliq

    Article  CAS  Google Scholar 

  9. Sharma S, Ko X, Kurapati Y, Singh H, Nešic S (2019) Adsorption behavior of organic corrosion inhibitors on metal surfaces—some new insights from molecular simulations. Corrosion 75:90–105. https://doi.org/10.5006/2976

    Article  CAS  Google Scholar 

  10. Rbaa M, Errahmany N, El Kacimi Y, Galai M, El Faydy M, Lakhrissi Y, Ebn Touhami M, Lakhrissi B (2018) Chemical and electrochemical studies of novel quinazolinone derivatives based on 8-hydroxyquinoline as corrosion inhibitor for mild steel in 1.0 M HCl solution. Anal Bioanal Electrochem 10:1328–1354

    CAS  Google Scholar 

  11. Rbaa M, Benhiba F, Abousalem AS, Galai M, Rouifi Z, Oudda H, Lakhrissi B, Warad I, Zarrouk A (2020) Sample synthesis, characterization, experimental and theoretical study of the inhibitory power of new 8-hydroxyquinoline derivatives for mild steel in 1.0 M HCl. J Mol Struct 1213:1–13. https://doi.org/10.1016/j.molstruc.2020.128155

    Article  CAS  Google Scholar 

  12. El-Mokadem TH, Hashem AI, Abdel-Sattar NE, Abdelshafi NS (2022) Green synthesis, electrochemical, DFT studies and MD simulation of novel synthesized thiourea derivatives on carbon steel corrosion inhibition in 1.0 M HCl. J Mol Struct 1274:134567. https://doi.org/10.1016/j.molstruc.2022.134567

    Article  CAS  Google Scholar 

  13. Dutta A, Saha SK, Adhikari U, Banerjee P, Sukul D (2017) Effect of substitution on corrosion inhibition properties of 2-(substituted phenyl) benzimidazole derivatives on mild steel in 1 M HCl solution: a combined experimental and theoretical approach. Corros Sci 123:256–266. https://doi.org/10.1016/j.corsci.2017.04.017

    Article  CAS  Google Scholar 

  14. Fergachi O, Benhiba F, Rbaa M, Ouakki M, Galai M, Touir R, Lakhrissi B, Oudda H, Touhami ME (2019) Corrosion inhibition of ordinary steel in 5.0 M HCl medium by benzimidazole derivatives: Electrochemical, UV–visible spectrometry, and DFT calculations. J Bio- Tribo-Corros 5:1–13. https://doi.org/10.1007/s40735-018-0215-3

    Article  Google Scholar 

  15. Arsalan N, Ramezanzadeh B, Guo L, Dehghani A (2022) Application of green active bio-molecules from the aquatic extract of Mint leaves for steel corrosion control in hydrochloric acid (1 M) solution. Surface, electrochemical thermodynamic, and theoretical explorations. Colloids Surf A Physicochem Eng Aspects 656(5):130540. https://doi.org/10.1016/j.colsurfa.2022.130540

    Article  CAS  Google Scholar 

  16. Tiwari P, Pal S, Ji G, Prakash R (2022) Popular food colors for sustainable corrosion inhibition of mild steel in 0.5 M H2SO4: Electrochemical and surface morphological investigation. Chem Afr. https://doi.org/10.1007/s42250-022-00369-6

    Article  Google Scholar 

  17. Kaya S, Tüzün B, Kaya C, Obot IB (2016) Determination of corrosion inhibition effects of amino acids: quantum chemical and molecular dynamic simulation study. J Taiwan Inst Chem Eng 58:528–535. https://doi.org/10.1016/j.jtice.2015.06.009

    Article  CAS  Google Scholar 

  18. Oubaaqa M, Ouakki M, Rbaa M, Abousalem AS, Maatallah M, Benhiba F, Jarid A, Ebn Touhami M, Zarrouk A (2021) Insight into the corrosion inhibition of new amino-acids as efficient inhibitors for mild steel in HCl solution: experimental studies and theoretical calculations. J Mol Liq 334:116520. https://doi.org/10.1016/j.molliq.2021.116520

    Article  CAS  Google Scholar 

  19. El Ibrahimi B, Jmiai A, Bazzi L, El Issami S (2020) Amino acids and their derivatives as corrosion inhibitors for metals and alloys. Arab J Chem 13:740–771. https://doi.org/10.1016/j.arabjc.2017.07.013

    Article  CAS  Google Scholar 

  20. Kumar CB, Pradeep B, Mohana KN (2014) Corrosion inhibition efficiency and adsorption characteristics of some Schiff bases at mild steel/hydrochloric acid interface. J Taiwan Inst Chem Eng 45:1031–1042. https://doi.org/10.1016/j.jtice.2013.08.017

    Article  CAS  Google Scholar 

  21. El Basiony NM, Elgendy A, Nady H, Migahed MA, Zaki EG (2019) Adsorption characteristics and inhibition effect of two Schiff base compounds on corrosion of mild steel in 0.5 M HCl solution: experimental, DFT studies, and Monte Carlo simulation. RSC Adv 9:10473–10485. https://doi.org/10.1039/c9ra00397e

    Article  CAS  PubMed  Google Scholar 

  22. Onyenanu CN, Emembolu LN, Ejiofor CC (2022) Corrosion inhibition potentials of A. mossambicensis and E. sonchifolia Leaves’ extracts on aluminium in alkaline media: insights from gravimetric and electrochemical studies. Chem Afr. https://doi.org/10.1007/s42250-022-00531-0

    Article  Google Scholar 

  23. Behpour M, Ghoreishi SM, Soltani N, Salavati-Niasari M, Hamadanian M, Gandomi A (2008) Electrochemical and theoretical investigation on the corrosion inhibition of mild steel by thiosalicylaldehyde derivatives in hydrochloric acid solution. Corros Sci 50:2172–2181. https://doi.org/10.1016/j.corsci.2008.06.020

    Article  CAS  Google Scholar 

  24. Alaoui K, Touir R, Galai M, Serrar H, Ouakki M, Kaya S, Tüzün B, Boukhris S, Ebn Touhami M, El Kacimi Y (2018) Electrochemical and computational studies of some triazepine carboxylate compounds as acid corrosion inhibitors for mild steel. J Bio- Tribo-Corros. https://doi.org/10.1007/s40735-018-0154-z

    Article  Google Scholar 

  25. Alaoui K, Ouakki M, Abousalem AS, Serrar H, Galai M, Derbali S, Nouneh K, Boukhris S, Touhami ME, El Kacimi Y (2019) Molecular dynamics, monte-carlo simulations and atomic force microscopy to study the interfacial adsorption behaviour of some triazepine carboxylate compounds as corrosion inhibitors in acid medium. J Bio- Tribo-Corros. https://doi.org/10.1007/s40735-018-0196-2

    Article  Google Scholar 

  26. Hsissou R, Benhiba F, El Aboubi M, Abbout S, Benzekri Z, Safi Z, Rafik M, Bahaj H, Kaba M, Galai M, Wazzan N (2022) Synthesis and performance of two ecofriendly epoxy resins as a highly efficient corrosion inhibition for carbon steel in 1 M HCl solution: DFT, RDF, FFV and MD approaches. Chem Phys Lett 1(806):139995. https://doi.org/10.1016/j.cplett.2022.139995

    Article  CAS  Google Scholar 

  27. Idouhli R, N’Ait Ousidi A, Koumya Y, Abouelfida A, Benyaich A, Auhmani A, Ait Itto MY (2018) Electrochemical studies of monoterpenic thiosemicarbazones as corrosion inhibitor for steel in 1 M HCl. Int J Corros 1155:1–15. https://doi.org/10.1155/2018/9212705

    Article  CAS  Google Scholar 

  28. Jasim AS, Rashid KH, Al-Azawi KF, Khadom AA (2022) Synthesis of a novel pyrazole heterocyclic derivative as corrosion inhibitor for low-carbon steel in 1M HCl: characterization, gravimetrical, electrochemical, mathematical, and quantum chemical investigations. Results Eng 15:100573. https://doi.org/10.1016/j.rineng.2022.100573

    Article  CAS  Google Scholar 

  29. Verma C, Ebenso EE, Bahadur I, Quraishi MA (2018) An overview on plant extracts as environmental sustainable and green corrosion inhibitors for metals and alloys in aggressive corrosive media. J Mol Liq 266:577–590. https://doi.org/10.1016/j.molliq.2018.06.110

    Article  CAS  Google Scholar 

  30. Verma C, Ebenso EE, Bahadur I, Quraishi MA (2018) An overview on plant extracts as environmental sustainable and green corrosion inhibitors for metals and alloys in aggressive corrosive media. J Mol Liq 266:565–573. https://doi.org/10.1016/j.molliq.2018.02.045

    Article  CAS  Google Scholar 

  31. Palaniappan N, Cole I, Caballero-Briones F, Manickam S, Justin Thomas KR, Santos D (2020) Experimental and DFT studies on the ultrasonic energy-assisted extraction of the phytochemicals of: Catharanthus roseus as green corrosion inhibitors for mild steel in NaCl medium. RSC Adv 10:5399–5411. https://doi.org/10.1039/c9ra08971c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Idouhli R, Oukhrib A, Khadiri M, Zakir O, Aityoub A, Abouelfida A, Benharref A, Benyaich A (2021) Understanding the corrosion inhibition effectiveness using Senecio anteuphorbium L. fraction for steel in acidic media. J Mol Struct 1228:129478. https://doi.org/10.1016/j.molstruc.2020.129478

    Article  CAS  Google Scholar 

  33. Kadiri L, Galai M, Ouakki M, Essaadaoui Y, Ouass A, Cherkaoui M, Rifi EH, Lebkiri A (2018) Anal Bioanal Electrochem 10(2):249–268

    CAS  Google Scholar 

  34. Prifiharni S, Mashanafie G, Priyotomo G, Royani A, Ridhova A, Elya B, Wahyuadi JS (2022) Extract sarampa wood (XylocarpusMoluccensis) as an eco-friendly corrosion inhibitor for mild steel in HCl 1M. J Indian Chem Soc 99(7):100520. https://doi.org/10.1016/j.jics.2022.100520

    Article  CAS  Google Scholar 

  35. Yildiz R, Doǧan T, Dehri I (2014) Evaluation of corrosion inhibition of mild steel in 0.1M HCl by 4-amino-3-hydroxynaphthalene-1-sulphonic acid. Corros Sci 85:215–221. https://doi.org/10.1016/j.corsci.2014.04.017

    Article  CAS  Google Scholar 

  36. Dagdag O, Safi Z, Hsissou R, Erramli H, El Bouchti M, Wazzan N, Guo L, Verma C, Ebenso EE, El Harfi A (2019) Epoxy pre-polymers as new and effective materials for corrosion inhibition of carbon steel in acidic medium: computational and experimental studies. Sci Rep 9:1–14. https://doi.org/10.1038/s41598-019-48284-0

    Article  CAS  Google Scholar 

  37. Ouakki M, Galai M, Rbaa M, Abousalem AS, Lakhrissi B, Rifi EH, Cherkaoui M (2019) Quantum chemical and experimental evaluation of the inhibitory action of two imidazole derivatives on mild steel corrosion in sulphuric acid medium. Heliyon. https://doi.org/10.1016/j.heliyon.2019.e02759

    Article  PubMed  PubMed Central  Google Scholar 

  38. Galai M, Rbaa M, Ouakki M, Guo L, Dahmani K, Nouneh K, Briche S, Lakhrissi B, Dkhireche N, Ebn Touhami M (2021) Effect of alkyl group position on adsorption behavior and corrosion inhibition of new naphthol based on 8-hydroxyquinoline: electrochemical, surface, quantum calculations and dynamic simulations. J Mol Liq 335:116552. https://doi.org/10.1016/j.molliq.2021.116552

    Article  CAS  Google Scholar 

  39. Rbaa M, Bazdi O, Lakhrissi Y, Ounine K, Lakhrissi B (2018) Synthesis, characterization and biological activity of new pyran derivatives of 8-hydroxyquinoline. Eurasian J Anal Chem 13:19–30

    CAS  Google Scholar 

  40. Oubaaqa M, Rbaa M, Ouakki M, Idouhli R, Maatallah M, Jarid A, Warad I, Abousalem AS, Lakhrissi B, Zarrouk A, Ebn Touhami M (2021) Novel triphenyl imidazole based on 8-hydroxyquinoline as corrosion inhibitor for mild steel in molar hydrochloric acid: experimental and theoretical investigations. J Appl Electrochem. https://doi.org/10.1007/s10800-021-01632-3

    Article  Google Scholar 

  41. Ouakki M, Rbaa M, Galai M, Lakhrissi B, Rifi EH, Cherkaoui M (2018) Experimental and quantum chemical investigation of imidazole derivatives as corrosion inhibitors on mild steel in 1.0 M hydrochloric acid. J Bio- Tribo-Corros 4:2–14. https://doi.org/10.1007/s40735-018-0151-2

    Article  Google Scholar 

  42. Ouakki M, Galai M, Benzekri Z, Aribou Z, Ech-chihbi E, Guo L, Dahmani K, Nouneh K, Briche S, Boukhris S, Cherkaoui M (2021) A detailed investigation on the corrosion inhibition effect of by newly synthesized pyran derivative on mild steel in 1.0 M HCl: experimental, surface morphological (SEM-EDS, DRX& AFM) and computational analysis (DFT & MD simulation). J Mol Liq 344:117777. https://doi.org/10.1016/j.molliq.2021.117777

    Article  CAS  Google Scholar 

  43. Islam N, Kaya S (2018) Conceptual density functional theory and its application in the chemical domain. CRC Press. https://doi.org/10.1201/b22471

  44. Erdoğan Ş, Safi ZS, Kaya S, Işın DÖ, Guo L, Kaya C (2017) A computational study on corrosion inhibition performances of novel quinoline derivatives against the corrosion of iron. J Mol Struct 1134:751–761. https://doi.org/10.1016/j.molstruc.2017.01.037

    Article  CAS  Google Scholar 

  45. Almuqrin AH, Al-Otaibi JS, Mary YS, Thomas R, Kaya S, Işın DÖ (2020) Spectral analysis and detailed quantum mechanical investigation of some acetanilide analogues and their self-assemblies with graphene and fullerene. J Mol Model 26(9):1–7. https://doi.org/10.1007/s00894-020-04485-3

    Article  CAS  Google Scholar 

  46. Parr RG, Szentpály LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121(9):1922–1924

    Article  CAS  Google Scholar 

  47. Gázquez JL, Cedillo A, Vela A (2007) Electrodonating and electroaccepting powers. J Phys Chem A 111(10):1966–1970. https://doi.org/10.1021/jp065459f

    Article  CAS  PubMed  Google Scholar 

  48. Koopmans T (1934) Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms. Physica 1(1–6):104–113

  49. Gómez B, Likhanova NV, Domínguez-Aguilar MA, Martínez-Palou R, Vela A, Gazquez JL (2006) Quantum chemical study of the inhibitive properties of 2-pyridyl-azoles. J Phys Chem B 110(18):8928–8934. https://doi.org/10.1021/jp057143y

    Article  CAS  PubMed  Google Scholar 

  50. Guo L, Kaya S, Obot IB, Zheng X, Qiang Y (2017) Toward understanding the anticorrosive mechanism of some thiourea derivatives for carbon steel corrosion: a combined DFT and molecular dynamics investigation. J Colloid Interface Sci 506:478–485. https://doi.org/10.1016/j.jcis.2017.07.082

    Article  CAS  PubMed  Google Scholar 

  51. Singh A, Ansari KR, Quraishi MA, Kaya S, Banerjee P (2019) The effect of an N-heterocyclic compound on corrosion inhibition of J55 steel in sweet corrosive medium. New J Chem 43(16):6303–6313. https://doi.org/10.1039/C9NJ00356H

    Article  CAS  Google Scholar 

  52. Guo L, Safi ZS, Kaya S, Shi W, Tüzün B, Altunay N, Kaya C (2018) Anticorrosive effects of some thiophene derivatives against the corrosion of iron: a computational study. Front Chem 6:155. https://doi.org/10.3389/fchem.2018.00155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Robles A, Franco-Pérez M, Gázquez JL, Cárdenas C, Fuentealba P (2018) Local electrophilicity. J Mol Model 24(9):1–12. https://doi.org/10.1007/s00894-018-3785-6

    Article  Google Scholar 

  54. Kaya S, Banerjee P, Saha SK, Tüzün B, Kaya C (2016) Theoretical evaluation of some benzotriazole and phospono derivatives as aluminum corrosion inhibitors: DFT and molecular dynamics simulation approaches. RSC Adv 6(78):74550–74559. https://doi.org/10.1039/C6RA14548E

    Article  CAS  Google Scholar 

  55. Rbaa M, Benhiba F, ObotI B, Oudda H, Warad I, Lakhrissi B, Zarrouk A (2019) Two new 8-hydroxyquinoline derivatives as an efficient corrosion inhibitors for mild steel in hydrochloric acid: Synthesis, electrochemical, surface morphological, UV–visible and theoretical studies. J Mol Liq 276:120–133. https://doi.org/10.1016/j.molliq.2018.11.104

    Article  CAS  Google Scholar 

  56. Huang W, Hu L, Liu C, Pan J, Tian Y, Cao K (2018) Corrosion inhibition of carbon steel by lepidine in HCl solution. Int J Electrochem Sci 13:11273–11285. https://doi.org/10.20964/2018.11.90

    Article  CAS  Google Scholar 

  57. Goulart CM, Esteves-Souza A, Martinez-Huitle CA, Rodrigues CJF, Maciel MAM, Echevarria A (2013) Experimental and theoretical evaluation of semicarbazones and thiosemicarbazonesas organic corrosion inhibitors. Corros Sci 67:281–291. https://doi.org/10.1016/j.corsci.2012.10.029

    Article  CAS  Google Scholar 

  58. Xu B, Yang W, Liu Y, Yin X, Gong W, Chen Y (2014) Experimental and theoretical evaluation of two pyridinecarboxaldehyde thiosemicarbazone compounds as corrosion inhibitors for mild steel in hydrochloric acid solution. Corros Sci 78:260–268. https://doi.org/10.1016/j.corsci.2013.10.007

    Article  CAS  Google Scholar 

  59. Rbaa M, Galai M, Benhiba F, Obot IB, Oudda H, EbnTouhami M, Zarrouk A (2018) Synthesis and investigation of quinazoline derivatives based on 8-hydroxyquinoline as corrosion inhibitors for mild steel in acidic environment: experimental and theoretical studies. Ionics 2(25):1–19. https://doi.org/10.1007/s11581-018-2817-7

    Article  CAS  Google Scholar 

  60. Galai M, Ouassir J, EbnTouhami M, Nassali H, Benqlilou H, Belhaj T, Berrami K, Mansouri I, Oauki B (2017) α-Brass and (α+ β) Brass degradation processes in azrou soil medium used in plumbing devices. J Bio-and Tribo-Corros 3:30. https://doi.org/10.1007/s40735-017-0087-y

    Article  Google Scholar 

  61. Haque J, Verma C, Srivastava V, Quraishi MA, Ebenso EE (2018) Experimental and quantum chemical studies of functionalized tetrahydropyridines as corrosion inhibitors for mild steel in 1 M hydrochloric acid. Results Phys 9:1481–1493. https://doi.org/10.1016/j.rinp.2018.04.069

    Article  Google Scholar 

  62. Galai M, Rbaa M, Serrar H, Ouakki M, Ech-chebab A, Ashraf S, Bousalem A, Ech-chihbi E, Dahmani K, Boukhris S, Zarrouk A, EbnTouhami M (2021) S-Thiazine as effective inhibitor of mild steel corrosion in HCl solution: synthesis, experimental, theoretical and surface assessment. Colloids Surf A Physicochem Eng Aspects 613:126127. https://doi.org/10.1016/j.colsurfa.2020.126127

    Article  CAS  Google Scholar 

  63. Noor EA (2007) Temperature effects on the corrosion inhibition of mild steel in acidic solutions by aqueous extract of fenugreek leaves. Int J Electrochem Sci 2:996–1017

    Article  CAS  Google Scholar 

  64. Lgaz H, Salghi R, Subrahmanya Bhat K, Chaouiki A, Shubhalaxmi Jodeh S (2017) Correlated experimental and theoretical study on inhibition behavior of novel quinoline derivatives for the corrosion of mild steel in hydrochloric acid solution. J Liq Mol. https://doi.org/10.1016/j.molliq.2017.08.121

    Article  Google Scholar 

  65. Bockris JOM, Reddy AK, Gamboa-Aldeco M (1998) Modern electrochemistry: an introduction to an interdisciplinary area. Plenum Press, New York

    Book  Google Scholar 

  66. Idouhli R, Oukhrib A, Koumya Y, Abouelfida A, Benyaich A, Benharref A (2018) Inhibitory effect of Atlas cedar essential oil on the corrosion of steel in 1 m HCl. Corros Rev 36:373–384. https://doi.org/10.1515/corrrev-2017-0076

    Article  CAS  Google Scholar 

  67. Cherrak K, Benhiba F, Sebbar NK, Essassi EM, Taleb M, Zarrouk A, Dafali A (2019) Corrosion inhibition of mild steel by new Benzothiazine derivative in a hydrochloric acid solution: experimental evaluation and theoretical calculations. Chem Data Collect 22:100252. https://doi.org/10.1016/j.cdc.2019.100252

    Article  CAS  Google Scholar 

  68. Galai M, Rbaa M, Ouakki M, Ashraf Abousalem S, Ech-chihbi E, Dahmani K, Dkhireche N, Lakhrissi B, EbnTouhami M (2020) Chemically functionalized of 8-hydroxyquinoline derivatives as efficient corrosion inhibition for steel in 1.0 M HCl solution: experimental and theoretical studies. Surf Interfaces 21:100695. https://doi.org/10.1016/j.surfin.2020.100695

    Article  CAS  Google Scholar 

  69. Asadi N, Ramezanzadeh M, Bahlakeh G, Ramezanzadeh B (2019) Utilizing Lemon Balm extract as an effective green corrosion inhibitor for mild steel in 1M HCl solution: a detailed experimental, molecular dynamics, Monte Carlo and quantum mechanics study. J Taiwan Inst Chem Eng 95:252–272. https://doi.org/10.1016/j.jtice.2018.07.011

    Article  CAS  Google Scholar 

  70. Verma C, Quraishi MA, Obot IB, Ebenso EE (2019) Effect of substituent dependent molecular structure on anti-corrosive behavior of one-pot multicomponent synthesized pyrimido [2,1-B] benzothiazoles: Computer modelling supported experimental studies. J Mol Liq 287:110972. https://doi.org/10.1016/j.molliq.2019.110972

    Article  CAS  Google Scholar 

  71. Kaya S, Kaya C (2015) A new method for calculation of molecular hardness: a theoretical study. Comput Theor Chem 1060:66–70. https://doi.org/10.1016/j.comptc.2015.03.004

    Article  CAS  Google Scholar 

  72. Kaya S, Kaya C (2015) A new equation for calculation of chemical hardness of groups and molecules. Mol Phys 113(11):1311–1319. https://doi.org/10.1080/00268976.2014.991771

    Article  CAS  Google Scholar 

  73. Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85(22):3533–3539

    Article  CAS  Google Scholar 

  74. Kaya S, Kaya C (2015) A simple method for the calculation of lattice energies of inorganic ionic crystals based on the chemical hardness. Inorg Chem 54(17):8207–8213. https://doi.org/10.1021/acs.inorgchem.5b00383

    Article  CAS  PubMed  Google Scholar 

  75. Von Szentpály L, Kaya S, Karakuş N (2020) Why and when is electrophilicity minimized New theorems and guiding rules. J Phys Chem A 124(51):10897–10908. https://doi.org/10.1021/acs.jpca.0c08196

    Article  CAS  Google Scholar 

Download references

Funding

The authors received no direct funding for this research article.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study's conception and design. Material preparation, data collection, and analysis were performed by KD, MG, MO, ZB, AEM, RL, SK, NA and NB. The first draft of the manuscript was written by SB and MC, all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mouhsine Galai.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahmani, K., Galai, M., Ouakki, M. et al. New Xanthene Diones Compounds as a Corrosion Inhibitor of Mild Steel in Acid Medium: Electrochemical, Surface Characterization and Theoretical Insights. Chemistry Africa 6, 2049–2069 (2023). https://doi.org/10.1007/s42250-023-00612-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00612-8

Keywords

Navigation