Skip to main content
Log in

Hammett constants from density functional calculations: charge transfer and perturbations

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Thermodynamic and kinetic components of density functional reactivity theory -based stabilization energies between interacting electron acceptors and electron donors are evaluated with and without taking into account perturbative effects on one reactant caused by the other. The values of the two energy components generated through these two approaches are then correlated to the Hammett’s substituent constant \(\left( \sigma \right)\) through the relation \(\sigma = m\log \frac{{\Delta E_{X} }}{{\Delta E_{H} }} + b\). Here \(\Delta E_{X}\) and \(\Delta E_{H}\) represent, respectively, energy components (either thermodynamic or kinetic) of the substituted and unsubstituted benzene derivatives. The generated data on six different series of reactions demonstrate that both perturbative and unperturbative approaches are of comparable reliability when either thermodynamic or kinetic energy components are used in the proposed relation, justifying the validity and generality of Hammett’s free energy relation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Akerman E (1957) Acta Chem Scand 11:373

    Article  CAS  Google Scholar 

  2. Glasstone S, Laidler KJ, Eyring H (1941) The theory of rate processes; the kinetics of chemical reactions, viscosity, diffusion and electrochemical phenomena. McGraw-Hill Book Company, New York

    Google Scholar 

  3. Evans MG, Polanyi M (1936) Trans Faraday Soc 32:1333

    Article  CAS  Google Scholar 

  4. Evans MG, Polanyi M (1935) Trans Faraday Soc 31:875

    Article  CAS  Google Scholar 

  5. Hammett LP (1940) Phys Org Chem

  6. Hammett LP (1937) J Am Chem Soc 59:96

    Article  CAS  Google Scholar 

  7. Hammett LP (1936) J Chem Phys 4:613

    Article  CAS  Google Scholar 

  8. Hammett LP (1935) Chem Rev 17:125

    Article  CAS  Google Scholar 

  9. Hammett LP, Deyrup AJ (1932) J Am Chem Soc 54:2721

    Article  CAS  Google Scholar 

  10. Hamid A, Roy RK (2020) J Phys Chem A 124:2721

    Article  Google Scholar 

  11. Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793

    Article  CAS  PubMed  Google Scholar 

  12. Johnson PA, Bartolotti LJ, Ayers PW, Fievez T, Geerlings P (2012) Charge density and chemical reactions: a unified view from conceptual DFT. In: Gatti C, Macchi P (eds) Modern charge density analysis. Springer, New York, p 715

    Google Scholar 

  13. Miranda-Quintana RA (2018). In: Islam N, Kaya S (eds) Conceptual density functional theory and its applications in the chemical domain, Apple Academic Press, New Jersey p 15

  14. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford UP, New York

    Google Scholar 

  15. Ayers PW, Parr RG (2007) J Am Chem Soc 2001:123

    Google Scholar 

  16. Ayers PW, Parr RG (2010) J Am Chem Soc 2000:122

    Google Scholar 

  17. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512

    Article  CAS  Google Scholar 

  18. Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68:3801

    Article  CAS  Google Scholar 

  19. Ayers PW, Parr RG, Pearson RG (2006) J Chem Phys 124:194107

    Article  PubMed  Google Scholar 

  20. Patra GK, Hati S, Datta D (1999) Section a-inorganic bio-inorganic physical theoretical & analytical chemistry. Indian J Chem 38:1

    Google Scholar 

  21. Pearson RG (1995) Inorg Chim Acta 240:93

    Article  CAS  Google Scholar 

  22. Pearson RG (1968) J Chem Educ 45:643

    Article  CAS  Google Scholar 

  23. Pearson RG (1968) J Chem Educ 45:581

    Article  CAS  Google Scholar 

  24. Pearson RG, Songstad J (1827) J Am Chem Soc 1967:89

    Google Scholar 

  25. Ayers PW (2007) Faraday Discuss 135:161

    Article  CAS  PubMed  Google Scholar 

  26. Ayers PW (2005) J Chem Phys 122:141102

    Article  PubMed  Google Scholar 

  27. Miranda-Quintana RA, Kim TD, Cardenas C, Ayers PW (2017) Theor Chem Acc 136:135

    Article  Google Scholar 

  28. Chattaraj PK, Ayers PW (2005) J Chem Phys 123:086101

    Article  PubMed  Google Scholar 

  29. Chattaraj PK (1996) Proc Indian Natl Sci Acad Part A 62:513

    CAS  Google Scholar 

  30. Chattaraj PK, Nath S (1994) Section A: inorganic, bio-inorganic, physical. Theor Anal Indian J Chem 33:842

    Google Scholar 

  31. Pearson RG (1989) J Phys Chem 1994:98

    Google Scholar 

  32. Pearson RG (1993) Acc Chem Res 26:250

    Article  CAS  Google Scholar 

  33. Pearson RG, Palke WE (1992) J Phys Chem 96:3283

    Article  CAS  Google Scholar 

  34. Parr RG, Chattaraj PK (1854) J Am Chem Soc 1991:113

    Google Scholar 

  35. Pal S, Valval N, Roy R (1993) J Phys Chem 97:4404

    Article  CAS  Google Scholar 

  36. Miranda-Quintana RA, Ayers PW (2018) J Chem Phys 148:196101

    Article  PubMed  Google Scholar 

  37. Miranda-Quintana RA (2017) J Chem Phys 146:046101

    Article  PubMed  Google Scholar 

  38. Miranda-Quintana RA, Chattaraj PK, Ayers PW (2017) J Chem Phys 147:124103

    Article  PubMed  Google Scholar 

  39. Pan S, Sola M, Chattaraj PK (1843) J Phys Chem A 2013:117

    Google Scholar 

  40. Morell C, Labet V, Grand A, Chermette H (2009) Phys Chem Chem Phys 11:3414

    Article  Google Scholar 

  41. Chattaraj PK (2007) Indian Journal of Physics and Proceedings of the Indian Association for the Cultivation of Science vol. 81: pp. 871

  42. Noorizadeh S (2007) Chin J Chem 25:1439

    Article  CAS  Google Scholar 

  43. Noorizadeh S (2007) J Phys Org Chem 20:514

    Article  CAS  Google Scholar 

  44. Parr RG (1994) Int J Quantum Chem 49:739

    Article  Google Scholar 

  45. Miranda-Quintana RA, Ayers PW, Heidar-Zadeh F (2021) ChemistrySelect 6:96

    Article  CAS  Google Scholar 

  46. Miranda-Quintana RA, Ayers PW (2019) Theor Chem Acc 138:44

    Article  Google Scholar 

  47. Miranda-Quintana RA, Heidar-Zadeh F, Ayers PW (2018) J Phys Chem Lett 9:4344

    Article  CAS  PubMed  Google Scholar 

  48. Miranda-Quintana RA, Ayers PW (2018) Theor Chem Acc 137:177

    Article  Google Scholar 

  49. Yang WT, Zhang YK, Ayers PW (2000) Phys Rev Lett 84:5172

    Article  CAS  PubMed  Google Scholar 

  50. Ayers PW (2008) J Math Chem 43:285

    Article  CAS  Google Scholar 

  51. Miranda-Quintana RA, Bochicchio RC (2014) Chem Phys Lett 593:35

    Article  CAS  Google Scholar 

  52. Bochicchio RC, Miranda-Quintana RA, Rial D (2013) J Chem Phys 139:191101

    Article  PubMed  Google Scholar 

  53. Bagaria P, Saha S, Murru S, Kavala V, Patel BK, Roy RK (2009) Phys Chem Chem Phys 11:8306

    Article  CAS  PubMed  Google Scholar 

  54. Saha S, Roy RK, Pal S (2010) Phys Chem Chem Phys 12:9328

    Article  CAS  PubMed  Google Scholar 

  55. Sarmah A, Saha S, Bagaria P, Roy RK (2012) Chem Phys 394:29

    Article  CAS  Google Scholar 

  56. Sarmah A, Roy RK (2013) RSC Adv 3:2822

    Article  CAS  Google Scholar 

  57. Sarmah A, Roy RK (2013) J Phys Chem C 117:21539

    Article  CAS  Google Scholar 

  58. Sarmah A, Roy RKJ (2014) Comput Aided Mol Des 28:1153

    Article  CAS  Google Scholar 

  59. Sarmah A, Roy RK (2015) J Phys Chem C 119:7940

    Article  Google Scholar 

  60. Sarmah A, Roy RK (2016) Chem Phys 472:218

    Article  CAS  Google Scholar 

  61. Hamid A, Anand A, Roy RK (2017) Phys Chem Chem Phys 19:10905

    Article  CAS  PubMed  Google Scholar 

  62. Hamid A, Roy RK (2019) Int J Quantum Chem 119:e25909

    Article  Google Scholar 

  63. Hamid A, Roy RK (2020) J Phys Chem A 124:1279

    Article  CAS  PubMed  Google Scholar 

  64. Roos G, Miranda-Quintana RA, Gonzalez MM (2018) J Phys Chem B 122:8157

    Article  CAS  PubMed  Google Scholar 

  65. Miranda-Quintana RA, Ayers PW (2016) Phys Chem Chem Phys 18:15070

    Article  CAS  PubMed  Google Scholar 

  66. Miranda-Quintana RA, González MM, Ayers PW (2016) Phys Chem Chem Phys 18:22235

    Article  CAS  PubMed  Google Scholar 

  67. Miranda-Quintana RA, Smiatek J (2021) J Mol Liq 322:114506

    Article  CAS  Google Scholar 

  68. Miranda-Quintana RA, Smiatek J (2020) ChemPhysChem 21:2605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Miranda-Quintana RA (2017) Theor Chem Acc 136:76

    Article  Google Scholar 

  70. Mullins RJ, Vedernikov A, Viswanathan R (2004) J Chem Educ 81:1357

    Article  CAS  Google Scholar 

  71. Murray RW, Gu H (1995) J Org Chem 60:5673

    Article  CAS  Google Scholar 

  72. Reddy SR, ManikYamba P (2006) J Chem Sci 118:257

    Article  CAS  Google Scholar 

  73. Smith JB, Byrd H, O’Donnell SE, Davis W (2010) J Chem Educ 87:845

    Article  CAS  Google Scholar 

  74. Scheiner P, Schomaker JH, Deming S, Libbey WJ, Nowack GP (1965) J Am Chem Soc 87:306

    Article  CAS  Google Scholar 

  75. Becke AD (1993) J Chem Phys 98:1372

    Article  CAS  Google Scholar 

  76. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  77. Hehre WJ, Stewart RF, Pople JA (1969) J Chem Phys 51:2657

    Article  CAS  Google Scholar 

  78. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  79. Walker M, Harvey AJ, Sen A, Dessent CE (2013) J Phys Chem A 117:12590

    Article  CAS  PubMed  Google Scholar 

  80. Hay PJ, Wadt WR (1985) J Chem Phys 82:299

    Article  CAS  Google Scholar 

  81. Check CE, Faust TO, Bailey JM, Wright BJ, Gilbert TM, Sunderlin LS (2001) J Phys Chem A 105:8111

    Article  CAS  Google Scholar 

  82. Menucci B, Cances E, Tomasi J (1997) J Phys Chem B 101:10506

    Article  Google Scholar 

  83. Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378

    Article  CAS  PubMed  Google Scholar 

  84. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Iszmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr, JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian Inc.: Wallingford CT

  85. Miranda-Quintana RA, Ayers PW, Heidar-Zadeh F (2021) Theor Chem Acc 140:140

    Article  CAS  Google Scholar 

Download references

Acknowledgements

RAMQ gratefully acknowledges financial support from the University of Florida in the form of a start-up grant. N.D. is grateful to SERB-DST for supporting her Research Fellowship. R.K.R. would like to acknowledge the Department of Chemistry as well as High Performance Computation (HPC) center of Birla Institute of Technology and Science (BITS), Pilani, India for providing the computational facilities. R.K.R. also acknowledges financial support of this research to SERB-DST (Project ref. No. CRG/2019/000956), Government of India, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ramón Alain Miranda-Quintana or Ram Kinkar Roy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miranda-Quintana, R.A., Deswal, N. & Roy, R.K. Hammett constants from density functional calculations: charge transfer and perturbations. Theor Chem Acc 141, 4 (2022). https://doi.org/10.1007/s00214-021-02863-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02863-5

Keywords

Navigation