Skip to main content
Log in

Photoexcitation of cresyl violet dye in aqueous solution: TD-DFT study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The vibronic absorption spectra of cresyl violet (CV+) oxazine dye in an aqueous solution using 40 hybrid functionals, the 6–31 +  + G(d,p) basis set, and the SMD solvent model were calculated. It turned out that the M062X functional provided the best agreement with the experiment in the positions of the main maximum and the short-wavelength shoulder. Our calculations showed that this shoulder is vibronic and is not caused by a separate electronic transition. At the same time, the shoulder intensity in the calculated spectrum turned out to be lower than in the experimental one. Various parameters of the CV+ cation in the ground and excited states (IR spectra, atomic charges, dipole moments, and transition moment) were calculated. Maps of the distribution of electron density and electrostatic potential were built. The influence of six strong hydrogen bonds of the dye with water molecules on the absorption spectrum was analyzed. It was shown that four H-bonds are strengthened and two ones are weakened upon CV+ excitation. Isak and Eyring's hypothesis that the shoulder in the absorption spectrum has a vibronic nature, and that the corresponding vibrations are influenced by steric hindrances from neighboring hydrogen atoms, was theoretically confirmed. Explicit modeling of six water molecules strongly bound to a dye molecule leads to a shift in the calculated spectrum to the long-wavelength region of the spectrum, an increase of the number of vibronic transitions, and the appearance of a weak short-wavelength peak, which is not observed in the experiment. Photoexcitation of the dye leads to a noticeable polarization of only one of the six considered water molecules associated with the endocyclic nitrogen atom in the central ring of the chromophore, the electron density on which increases significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wan Q, Song Y, Li Z, Gao X, Ma H (2013) In vivo monitoring of hydrogen sulfide using a cresyl violet-based ratiometric fluorescence probe. Chem Commun 49:502–504

    Article  CAS  Google Scholar 

  2. Ostrowski PP, Fairn GD, Grinstein S, Johnson DE (2016) Cresyl violet: a superior fluorescent lysosomal marker. Traffic 17:1313–1321

    Article  CAS  PubMed  Google Scholar 

  3. Lunardi CN, Gomes AJ, Palepu S, Galwaduge PT, Hillman EMC (2017) PLGA nano/microparticles loaded with cresyl violet as a tracer for drug delivery: characterization and in–situ hyperspectral fluorescence and 2-photon localization. Mater Sci Eng C 70:505–511

    Article  CAS  Google Scholar 

  4. Shiyanovskaya A, Hepel M (1998) Decrease of recombination losses in bicomponent WO3/TiO2 films photosensitized with cresyl violet and thionine. J Electrochem Soc 145:3981–3985

    Article  CAS  Google Scholar 

  5. Sun Y-N, Zhang M-M, Li L-X, Ji R, Wang X, Li P, Li Y-Y, Zheng M-Q, Liu G-Q, Zuo X-L, Li Z, Li Y-Q (2009) Simultaneous confocal laser endomicroscopy and chromoendoscopy with topical cresyl violet. Gastrointest Endosc 70:959–968

    Article  Google Scholar 

  6. Sun Y-N, Zhang M-M, Li L-X, Ji R, Wang X, Li P, Li Y-Y, Zheng M-Q, Liu G-Q, Zuo X-L, Li Z, Li Y-Q (2020) Cresyl violet as a new contrast agent in probe-based confocal laser endomicroscopy for in vivo diagnosis of gastric intestinal metaplasia. J Gastroenterol Hepatol 35:453–460

    Article  CAS  PubMed  Google Scholar 

  7. Schmidt W, Appt W, Wittekindt N (1972) Characteristics of a cresyl violet laser. Z Naturforsch 27:37–41

    Article  CAS  Google Scholar 

  8. Gacoin P, Flamant P (1972) High efficiency cresyl violet laser. Optics Commun 5:351–353

    Article  CAS  Google Scholar 

  9. Arthur EG, Bradley DJ, Puntambekar PN, Ruddock IS (1974) The effect of saturable absorber lifetime in picosecond pulse generation. II. the cresyl-violet laser. Optics Commun 12:360–365

    Article  Google Scholar 

  10. Magde D, Brannon JH, Cremers TL, Olmsted J (1979) Absolute luminescence yield of cresyl violet: a standard for the red. J Phys Chem 83:696–699

    Article  CAS  Google Scholar 

  11. Isak SJ, Eyring EM (1992) Fluorescence quantum yield of cresyl violet in methanol and water as a function of concentration. J Phys Chem 96:1738–1742

    Article  CAS  Google Scholar 

  12. Shah J, Leheny RF (1974) Excited state absorption spectrum of cresyl violet perchlorate. Appl Phys Lett 24:562–564

    Article  CAS  Google Scholar 

  13. Castelli F (1975) Stimulated emission of cresyl violet pumped by N2 laser or rhodamine 6G dye laser. Appl Phys Lett 26:18–19

    Article  CAS  Google Scholar 

  14. Baran J, Langley AJ, Jones WJ (1984) Coherent amplification in fluorescent dye solutions. I. the fluorescence gain spectrum of cresyl violet. Chem Phys 87:305–319

    Article  CAS  Google Scholar 

  15. Blanchard GJ, Wirth MJ (1986) Measurement of small absorbances by picosecond pump-probe spectrometry. Anal Chem 58:532–535

    Article  CAS  Google Scholar 

  16. Brito Cruz CH, Fork RL, Knox WH, Shank CV (1986) Spectral hole burning in large molecules probed with 10 fs optical pulses. Chem Phys Lett 132:341–344

    Article  Google Scholar 

  17. Gaur A, Taneja L, Sharma AK, Mohan D, Singh RD (1991) Concentration and pump intensity dependent gain studies for disodium fluorescein (FDS), cresyl violet (CV), and rhodamine–590 (C1) and cresyl violet mixture. Optics Commun 83:235–240

    Article  CAS  Google Scholar 

  18. Schneider S, Bierl R, Seischab M (1994) Sub-picosecond transient grating measurements of the resonant energy transfer in cresyl violet solutions. Evidence for non-diffusive energy transport. Chem Phys Lett 230:343–350

    Article  CAS  Google Scholar 

  19. Brazard J, Bizimana LA, Turner DB (2015) Accurate convergence of transient-absorption spectra using pulsed lasers. Rev. Sci. Instruments 86:053106

    Article  Google Scholar 

  20. Turner DB, Wilk KE, Curmi PMG, Scholes GD (2011) Comparison of electronic and vibrational coherence measured by two-dimensional electronic spectroscopy. J Phys Chem Lett 2:1904–1911

    Article  CAS  Google Scholar 

  21. Heisler IA, Moca R, Camargo FVA, Meech SR (2014) Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition. Rev. Sci. Instruments 85:063103

    Article  Google Scholar 

  22. Spokoyny B, Koh CJ, Harel E (2015) Stable and high-power few cycle supercontinuum for 2D ultrabroadband electronic spectroscopy. Optics Lett 40:1014–1017

    Article  CAS  Google Scholar 

  23. Bizimana LA, Brazard J, Carbery WP, Gellen T, Turner DB (2015) Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy. J Chem Phys 143:164203

    Article  PubMed  Google Scholar 

  24. Gellen TA, Bizimana LA, Carbery WP, Breen I, Turner DB (2016) Ultrabroadband two–quantum two–dimensional electronic spectroscopy. J Chem Phys 145:064201

    Article  Google Scholar 

  25. Ma X, Dostál J, Brixner T (2016) Broadband 7-fs diffractive–optic–based 2D electronic spectroscopy using hollow-core fiber compression. Opt Express 24:20781

    Article  CAS  PubMed  Google Scholar 

  26. Draeger S, Roeding S, Brixner T (2017) Rapid-scan coherent 2D fluorescence spectroscopy. Opt Express 134:3259–3267

    Article  Google Scholar 

  27. Mueller S, Draeger S, Ma X, Hensen M, Kenneweg T, Pfeiffer W, Brixner T (2018) Fluorescence-detected two-quantum and one-quantum-two-quantum 2d electronic spectroscopy. J Phys Chem Lett 9:1964–1969

    Article  CAS  PubMed  Google Scholar 

  28. Carbery WP, Pinto-Pacheco B, Buccella D, Turner DB (2019) Resolving the fluorescence quenching mechanism of an oxazine dye using ultrabroadband two-dimensional electronic spectroscopy. J Phys Chem A 123:5072–5080

    Article  CAS  PubMed  Google Scholar 

  29. Fitzpatrick C, Odhner JH, Levis RJ (2020) Spectral signatures of ground- and excited-state wavepacket interference after impulsive excitation. J Phys Chem A 124:6856–6866

    Article  CAS  PubMed  Google Scholar 

  30. Wiese N, Eichler HJ, Salk J (1989) Nonlinear complex susceptibility of cresyl violet solution measured with a dynamic grating method. IEEE J Quant Elect 25:403–407

    Article  CAS  Google Scholar 

  31. Zakerhamidi MS, Nasrollahzadeh Z, Seyed Ahmadian SM (2018) Solvent specific and nonspecific interactions’ effects on nonlinear optical responses of Cresyl Violet dye. J. Mol. Liquids 268:529–535

    Article  CAS  Google Scholar 

  32. Dou C, Wen P, Kong X, Nakanishi S, Feng Q (2011) The nonlinear refraction sign turned to reverse by intercalating cresyl violent dye into layered titanate nanosheets. Optics Commun 284:1067–1071

    Article  CAS  Google Scholar 

  33. Urrutia MN, Ortiz CS (2015) Analytical and preparative chromatographic procedures for obtaining pure cresyl violet and cresyl red from commercial cresyl violet. Biotech Histochem 90:159–166

    Article  CAS  PubMed  Google Scholar 

  34. Kreller DI, Kamat PV (1991) Photochemistry of sensitizing dyes. spectroscopic and redox properties of cresyl vlolet. J Phys Chem 95:4406–4410

    Article  CAS  Google Scholar 

  35. Jafari A, Ghanadzadeh A, Tajalli H, Yeganeh M, Moghadam M (2007) Electronic absorption spectra of cresyl violet acetate in anisotropic and isotropic solvents. Spectrochim Acta A 66:717–725

    Article  CAS  Google Scholar 

  36. Urrutia MN, Ortiz CS (2016) Novel oxazine and oxazone dyes: aggregation behavior and physicochemical properties. New J Chem 40:10161–10171

    Article  CAS  Google Scholar 

  37. Isak SJ, Eyring EM (1992) Cresyl violet chemistry and solvents and micelles. J Photochem Photobiol A 64:343–358

    Article  CAS  Google Scholar 

  38. Beuerman E, Makarov N, Drobizhev M, Rebane A (2010) Justification of two-level approximation for description of two-photon absorption in oxazine dyes. Proc SPIE 7599:75990X

    Article  Google Scholar 

  39. Magde D, Brannon JH, Cremers TL (1979) Olmsted, Absolute Luminescence Yield of Cresyl Violet. A Standard for the Red. J Phys Chem 83:696–699

    Article  CAS  Google Scholar 

  40. Olmsted J (1979) Calorimetric determinations of absolute fluorescence quantum yields. J Phys Chem 83:2581–2584

    Article  CAS  Google Scholar 

  41. Bayrakceken F, Yegin (2012) Fluorescence, decay time, and structural change of laser dye cresyl violet in solution due to microwave irradiation at GSM 900/1800 mobile phone frequencies, Int. J. Photoenergy 965426

  42. Baumgärtel T, Graaf H (2014) Spectral shift of cresyl violet luminescence on charged silicon oxide nanostructures. Phys Status Solidi A 211:905–909

    Article  Google Scholar 

  43. Kusinski M, Nagesh J, Gladkikh M, Izmaylov AF, Jockusch RA (2019) Deuterium isotope effect in fluorescence of gaseous oxazine dyes. Phys Chem Chem Phys 21:5759–5770

    Article  CAS  PubMed  Google Scholar 

  44. Liu J, Huang S, Qin W, Yu J (1992) Investigation of picosecond relaxation processes in cresyl violet. Optics Commun 91:87–92

    Article  CAS  Google Scholar 

  45. Liu J, Huang S, Qin W, Yu J (1993) Measurement of the picosecond population relaxation time of cresyl violet by time–delayed four–wave mixing with incoherent light. J Luminesc 54:319–323

    Article  CAS  Google Scholar 

  46. Priyadarsini KI, Mohan H (2003) Effect of NaCl on the spectral and kinetic properties of cresyl violet (CV)-sodium dodecyl sulphate (SDS) complex. Proc Indian Acad Sci 115:299–306

    Article  CAS  Google Scholar 

  47. Carter TP, Fearey BL, Hayes JM, Small GJ (1983) Optical dephasing of cresyl violet in a polyvlnyl alcohol polymer by non-photochemical hole burning. Chem Phys Lett 102:272–276

    Article  CAS  Google Scholar 

  48. Chang T-C, Small GJ (1985) Fully resonant CARS of cresyl violet in polyacrylic acid polymer films. Chem Phys 99:479–487

    Article  CAS  Google Scholar 

  49. Portella MT, Montelmacher P, Bourdon A, Evesque P, Duran J (1987) Four-wave mixing experiments in cresyl violet thin films: inadequacy of a two-level interpretation. J Phys Chem 91:3715–3719

    Article  CAS  Google Scholar 

  50. Shu L, Small GJ (1992) Dispersive kinetics of nonphotochemical hole burning and spontaneous hole filling: Cresyl Violet in polyvinyl films. J Opt Soc Am B 9:733–737

    Article  CAS  Google Scholar 

  51. Shu L, Small GJ (1992) Laser–induced hole filling: cresyl Violet in polyvinyl alcohol films. J Opt Soc Am B 9:738–745

    Article  CAS  Google Scholar 

  52. Shu L, Small GJ (1992) Mechanism of nonphotochemical hole burning: Cresyl Violet in polyvinyl alcohol films. J Opt Soc Am B 9:724–732

    Article  CAS  Google Scholar 

  53. Philip A, Radhakrishnan P, Nampoori VPN, Vallabhan CPG (1994) Monitoring the photobleaching of cresyl violet in polyvinyl alcohol using the photoacoustic effect. Opt Eng 33:1962–1963

    Article  CAS  Google Scholar 

  54. Alyamani A, Ibnaouf KH, Yassin OA, AlSalhi MS, Fekkai Z, Mustapha N (2016) Spectral, electrical and morphological properties of spin coated MEH-PPV and cresyl violet blended thin films for a light emitting diode. Optik 127:2331–2335

    Article  CAS  Google Scholar 

  55. Sadaoka Y, Sakai Y, Murata Y (1993) Optical properties of cresyl violet-polymer composites for quantification of humidity and ammonia gas in ambient air. J Mater Chem 3:247–251

    Article  CAS  Google Scholar 

  56. Zhang Y, Hartmann SR (1996) Incoherent four-wave-mixing on nile blue and cresyl violet in glass and polymer at 5 K: Single–site line shape analysis. J Chem Phys 104:4380–4389

    Article  CAS  Google Scholar 

  57. Narasimhan LR, Pack DW, Fayer MD (1988) Solute-solvent dynamics and interactions in glassy media: photon echo and optical hole burning studies of cresyl violet in ethanol glass. Chem Phys Lett 152:287–293

    Article  CAS  Google Scholar 

  58. Leng W, Kelley AM (2003) Resonance raman intensity analysis of cresyl violet bound to SiO2 colloidal nanoparticles. Langmuir 19:7049–7055

    Article  CAS  Google Scholar 

  59. Song Y, Wang Z, Li L, Shi W, Li X, Ma H (2014) Gold nanoparticles functionalized with cresyl violet and porphyrin via hyaluronic acid for targeted cell imaging and phototherapy. Chem Commun 50:15696–15698

    Article  CAS  Google Scholar 

  60. Kotresh MG, Adarsh KS, Shivkumar MA, Mulimani BG, Savadatti MI, Inamdar SR (2016) Spectroscopic investigation of alloyed quantum dot-based FRET to cresyl violet dye. Luminescence 31:760–768

    Article  CAS  PubMed  Google Scholar 

  61. Sekhar MC, Samanta A (2015) Ultrafast transient absorption study of the nature of interaction between oppositely charged photoexcited CdTe quantum dots and cresyl violet. J Phys Chem C 119:15661–15668

    Article  CAS  Google Scholar 

  62. Ramírez-Herrera DE, Tirado-Guízar A, Paraguay-Delgado F, Pina-Luis G (2017) Ratiometric arginine assay based on FRET between CdTe quantum dots and Cresyl violet. Microchim Acta 184:1997–2005

    Article  Google Scholar 

  63. Coello-Fiallos D, Cazzanelli E, Tavolaro A, Tavolaro P, Arias M, Caputi LS (2018) Cresyl violet adsorption on sonicated graphite oxide. J Nanosci Nanotech 18:3006–3011

    Article  CAS  Google Scholar 

  64. Millar DP, Shah R, Zewail AH (1979) Picosecond saturation spectroscopy of cresyl violet: rotational diffusion by a “sticking” boundary condition in the liquid phase. Chem Phys Lett 66:435–440

    Article  CAS  Google Scholar 

  65. Blanchard GJ, Wirth MJ (1985) A critical comparison of molecular reorientation in the ground and excited electronic states: Cresyl violet in methanol. J Chem Phys 82:39–44

    Article  CAS  Google Scholar 

  66. Blanchardt GJ, Wirth MJ (1986) Anomalous temperature-dependent reorientation of cresyl violet in 1-dodecanol. J Phys Chem 90:2521–2525

    Article  Google Scholar 

  67. Quitevis EL, Casey KG, Sinor T-W (1986) Picosecond rotational reorientation of cresyl violet in polymer solution. Chem Phys Lett 132:77–82

    Article  CAS  Google Scholar 

  68. Xiao-Hui L, Rong-Wei F, Xin Y, De-Ying C (2013) Investigation of energy transfer from pyrromethene dye to cresyl violet 670 in ethanol. Chinese Phys. B 22:123402

    Article  Google Scholar 

  69. Dienes A, Madden M (1973) Study of excitation transfer in dye mixtures by measurements of gain spectra. J Appl Phys 44:4161–4164

    Article  CAS  Google Scholar 

  70. Kietzmann R, Willig F, Weller H, Vogel R, Nath DN, Eichberger R, Lehnert J (1991) Picosecond time resolved electron injection from excited cresyl violet monomers and Cd3P2 quantum dots into TiO2. Mol Crystals Liquid Crystals 194:169–180

    Article  CAS  Google Scholar 

  71. Liu D, Hug GL, Kamat PV (1995) Photochemistry on Surfaces. Intermolecular Energy and Electron Transfer Processes between Excited Ru(bpy)32+ and H-Aggregates of Cresyl Violet on SiO2 and SnO2 Colloids. J Phys Chem 99:16768–16775

    Article  CAS  Google Scholar 

  72. Basch T, Brauchle C (1988) Fluorescence line narrowing and persistent spectral hole burning of cresyl violet adsorbed on heterogeneous surfaces. J Phys Chem 92:5069–5072

    Article  Google Scholar 

  73. Banik S, Hussain SA, Bhattacharjee D (2018) Modified aggregation pattern of cresyl violet acetate adsorbed on nano clay mineral layers in Langmuir Blodgett film. J Photochem Photobiol A 353:570–580

    Article  CAS  Google Scholar 

  74. Nau WM, Mohanty J (2005) Taming fluorescent dyes with cucurbituril. Int J Photoenergy 7:133–141

    Article  CAS  Google Scholar 

  75. Steinhurst DA, Owrutsky JC (2001) Second harmonic generation from oxazine dyes at the air/water interface. J Phys Chem B 105:3062–3072

    Article  CAS  Google Scholar 

  76. Fleming S, Mills A, Tuttle T (2011) Predicting the UV-vis spectra of oxazine dyes. Beilstein J Org Chem 7:432–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Takeshita T (2020) Computational study of cresyl violet covalently attached to the silane coupling agents: application to TiO2–based photocatalysts and dye-sensitized solar cells. Nanomaterials 10:1958

    Article  CAS  PubMed Central  Google Scholar 

  78. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comp Chem 24:669–681

    Article  CAS  Google Scholar 

  79. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

    Article  CAS  PubMed  Google Scholar 

  80. Zhou P (2018) Why the lowest electronic excitations of rhodamines are overestimated by time-dependent density functional theory, Int. J. Quantum Chem. e25780.

  81. Moore B, Schrader RL, Kowalski K, Autschbach J (2017) Electronic π-to-π* excitations of rhodamine dyes exhibit a time-dependent kohn-sham theory “cyanine problem.” ChemistryOpen 6:385–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dierksen M, Grimme S (2004) The vibronic structure of electronic absorption spectra of large molecules: a time-dependent density functional study on the influence of “exact” hartree-fock exchange. J Phys Chem A 108:10225–10237

    Article  CAS  Google Scholar 

  83. Dierksen M, Grimme S (2005) An efficient approach for the calculation of Franck-Condon integrals of large molecules. J Chem Phys 122:244101

    Article  PubMed  Google Scholar 

  84. Jacquemin D, Brémond E, Planchat A, Ciofini I, Adamo C (2011) TD-DFT vibronic couplings in anthraquinones: from basis set and functional benchmarks to applications for industrial dyes. J Chem Theory Comput 7:1882–1892

    Article  CAS  PubMed  Google Scholar 

  85. Adamo C, Jacquemin D (2013) The calculations of excited-state properties with time-dependent density functional Theory. Chem Soc Rev 42:845–856

    Article  CAS  PubMed  Google Scholar 

  86. Jacquemin D, Brémond E, Ciofini I, Adamo C (2012) Impact of vibronic couplings on perceived colors: two anthraquinones as a working example. J Phys Chem Lett 3:468–471

    Article  CAS  PubMed  Google Scholar 

  87. Marini A, Muñoz-Losa A, Biancardi A, Mennucci B (2010) What is solvatochromism? J Phys Chem B 114:17128–17135

    Article  CAS  PubMed  Google Scholar 

  88. Bani-Yaseen AD, Al-Balawi M (2014) The solvatochromic, spectral, and geometrical properties of nifenazone: a DFT/TD-DFT and experimental study. Phys Chem Chem Phys 16:15519–15526

    Article  CAS  PubMed  Google Scholar 

  89. Condon EU (1928) Nuclear motions associated with electron transitions in diatomic molecules. Phys Rev 32:858–872

    Article  CAS  Google Scholar 

  90. Baiardi A, Bloino J, Barone V (2013) General time dependent approach to vibronic spectroscopy including franck-condon, herzberg-teller, and duschinsky effects. J Chem Theory Comput 9:4097–4115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Frisch MJ,Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams–Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16, Revision C.01, Inc., Wallingford CT

  92. Herzberg G, Teller E (1933) Schwingungsstruktur der Elektronenubergange bei mehratomigen Molekulen. Z Phys Chem Abt B 21:410–446

    Article  Google Scholar 

  93. Santoro F, Lami A, Improta R, Bloino J, Barone V (2008) Effective method for the computation of optical spectra of large molecules at finite temperature including the Duschinsky and Herzberg-Teller effect: The Qx band of porphyrin as a case study. J Chem Phys 128:224311

    Article  PubMed  Google Scholar 

  94. Duschinsky F (1937) The importance of the electron spectrum in multi atomic molecules. Concerning the Franck-Condon principle, Acta Physicochim. URSS 7 551

  95. Improta R, Barone V, Scalmani G, Frisch MJ (2006) A state-specific polarizable continuum model time dependent density functional method for excited state calculations in solution. J Chem Phys 125:054103

    Article  PubMed  Google Scholar 

  96. Barboza CA, Vazquez PAM, Carey DM-L, Arratia-Perez R (2012) A TD-DFT basis set and density functional assessment for the calculation of electronic excitation energies of fluorene. Int J Quantum Chem 112:3434–3438

    Article  CAS  Google Scholar 

  97. Charaf-Eddin A, Planchat A, Mennucci B, Adamo C, Jacquemin D (2013) Choosing a functional for computing absorption and fluorescence band shapes with TD-DFT. J Chem Theory Comput 9:2749–2760

    Article  CAS  PubMed  Google Scholar 

  98. Kantchev EAB, Norsten TB, Sullivan MB (2012) Time-dependent density functional theory (TDDFT) modelling of Pechmann dyes: from accurate absorption maximum prediction to virtual dye screening. Org Biomol Chem 10:6682–6692

    Article  CAS  PubMed  Google Scholar 

  99. Dennington R, Keith TA, Millam JM (2016) GaussView, Version 6.1, Semichem Inc., Shawnee Mission KS

  100. Isegawa M, Peverati R, Truhlar DG (2012) Performance of recent and high–performance approximate density functionals for time-dependent density functional theory calculations of valence and Rydberg electronic transition energies. J Chem Phys 137:244104

    Article  PubMed  Google Scholar 

  101. Vogel E, Gbureck A, Kiefer W (2000) Vibrational spectroscopic studies on the dyes cresyl violet and coumarin 152. J Mol Structure 550–551:177–190

    Article  Google Scholar 

  102. Reichardt C (1994) Solvatochromic dyes as solvent polarity indicators. Chem Rev 94:2319–2358

    Article  CAS  Google Scholar 

  103. Singh UC, Kollman PA (1984) An approach to computing electrostatic charges for molecules. J Comput Chem 5:129–145

    Article  CAS  Google Scholar 

  104. Zhao GJ, Han KL (2008) Effects of hydrogen bonding on tuning photochemistry: Concerted hydrogen-bond strengthening and weakening. ChemPhysChem 9:1842–1846

    Article  CAS  PubMed  Google Scholar 

  105. Qin Z, Li X, Zhou M (2014) A theoretical study on hydrogen-bonded complex of proflavine cation and water: the site-dependent feature of hydrogen bond strengthening and weakening. J Chin Chem Soc 61:1199–1204

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor V. Kostjukov.

Ethics declarations

Conflict of interest

The authors declared that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5273 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostjukov, V.V. Photoexcitation of cresyl violet dye in aqueous solution: TD-DFT study. Theor Chem Acc 140, 155 (2021). https://doi.org/10.1007/s00214-021-02853-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02853-7

Keywords

Navigation