Skip to main content
Log in

Electronic transport behavior of 2-amino-4,5-bis(2,5-dimethylthiophen-3-yl)furan-3-carbonitrile (a diarylethene) as optical molecular switch: a first-principles approach

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In this study, the electronic transport properties of 2-amino-4,5-bis(2,5-dimethylthiophen-3-yl)furan-3-carbonitrile (as a diarylethene) and its 3 derivatives in R position (R = H, –NH2, and –NO2) have been studied by non-equilibrium green’s function joint with density functional theory. This molecule can be converted from closed form to open form by ultraviolet radiation or visible light. Several parameters, including different molecular geometries, the influence of electrode constituents (Pt, Au, and Ag) and adsorption types (bridge, hollow, and top), IV characteristics, onoff ratio, HOMO–LUMO gaps, and electronic transmission coefficients T(E), have been investigated. The results showed that as the molecule changes from closed form to open form (closed → open), conductivity changes from on state (high conductivity) to off state (low conductivity).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Reed MA, Zhou C, Muller C, Burgin T, Tour J (1997) Conductance of a molecular junction. Science 278(5336):252–254

    Article  CAS  Google Scholar 

  2. Venkataraman L, Klare JE, Nuckolls C, Hybertsen MS, Steigerwald ML (2006) Dependence of single-molecule junction conductance on molecular conformation. Nature 442(7105):904–907

    Article  CAS  PubMed  Google Scholar 

  3. Correa-Duarte MA, Wagner N, Rojas-Chapana J, Morsczeck C, Thie M, Giersig M (2004) Fabrication and biocompatibility of carbon nanotube-based 3D networks as scaffolds for cell seeding and growth. Nano Lett 4(11):2233–2236

    Article  CAS  Google Scholar 

  4. Guo X, Small JP, Klare JE, Wang Y, Purewal MS, Tam IW, Hong BH, Caldwell R, Huang L, O’brien S (2006) Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules. Science 311(5759):356–359

    Article  CAS  PubMed  Google Scholar 

  5. Chen J, Reed M, Rawlett A, Tour J (1999) Large on-off ratios and negative differential resistance in a molecular electronic device. Science 286(5444):1550–1552

    Article  CAS  PubMed  Google Scholar 

  6. Khosravi E, Stefanucci G, Kurth S, Gross E (2009) Bound states in time-dependent quantum transport: oscillations and memory effects in current and density. Phys Chem Chem Phys 11(22):4535–4538

    Article  CAS  PubMed  Google Scholar 

  7. Kanaani A, Vakili M, Ajloo D (2020) Electronic transport properties of 2-nitro-4-(6-(4-nitrophenyl)-4-phenyl-1, 3-diaza-bicyclo [3.1 0] hex-3-en-2-yl) phenol: a light-driven molecular switch. Optik 219:165295

    Article  CAS  Google Scholar 

  8. Sayyar Z, Vakili M, Kanaani A, Eshghi H (2020) First-principles study of 2, 6-dimethyl-3, 5-heptanedione: a β-diketone molecular switch induced by hydrogen transfer. J Comput Electron 19(3):917–930

    Article  CAS  Google Scholar 

  9. Kanaani A, Vakili M, Ajloo D, Nekoei M (2018) Current–voltage characteristics of the aziridine-based nano-molecular wires: a light-driven molecular switch. Chin Phys Lett 35(4):48501–48506

    Article  Google Scholar 

  10. Kanaani A, Ajloo D, Kiyani H, Amri SAN (2018) First-principles study of the electronic transport properties of a 1, 3-diazabicyclo [3.1. 0] hex-3-ene molecular optical switch. Optik 153:135–143

    Article  CAS  Google Scholar 

  11. Vakili M, Sobhkhizi A, Darugar V, Kanaani A, Ajloo D (2017) A first-principles study of aryloxyanthraquinone-based optical molecular switch. Chem Phys Lett 686:140–147

    Article  CAS  Google Scholar 

  12. Kurutos A, Shindo Y, Hiruta Y, Oka K, Citterio D (2020) Near-infrared pH responsive heptamethine cyanine platforms: modulating the proton acceptor. Dyes Pigm 181:108611

    Article  CAS  Google Scholar 

  13. Kurutos A, Orehovec I, Saftić D, Horvat L, Crnolatac I, Piantanida I, Deligeorgiev T (2018) Cell penetrating, mitochondria targeting multiply charged DABCO-cyanine dyes. Dyes Pigm 158:517–525

    Article  CAS  Google Scholar 

  14. Darugar V, Vakili M, Tayyari SF (2021) Voltage–current behavior of 4-phenylamino-3-penten-2-one and its derivatives molecular switch: a first-principles study. Mol Simul. https://doi.org/10.1080/08927022.2021.1917767

    Article  Google Scholar 

  15. Darugar V, Vakili M, Tayyari SF (2021) Electronic transport behavior of 1-(Phenyldiazenyl) naphthalen-2-ol and its derivatives as optical molecular switches: A first-principles approach. Optik 236:166475–166484

    Article  CAS  Google Scholar 

  16. Kurutos A, Balabanov I, Kamounah FS, Nikolova-Ganeva K, Borisova D, Gadjev N, Deligeorgiev T, Tchorbanov A (2018) Bright green-emitting ds-DNA labeling employed by dicationic monomethine cyanine dyes: apoptosis assay and fluorescent bio-imaging. Dyes Pigm 157:267–277

    Article  CAS  Google Scholar 

  17. Kurutos A, Orehovec I, Paić AT, Crnolatac I, Horvat L, Gadjev N, Piantanida I, Deligeorgiev T (2018) New series of non-toxic DNA intercalators, mitochondria targeting fluorescent dyes. Dyes Pigm 148:452–459

    Article  CAS  Google Scholar 

  18. Rocha AR, Rossi M, Fazzio A, da Silva AJ (2008) Designing real nanotube-based gas sensors. Phys Rev Lett 100(17):176803–176807

    Article  CAS  PubMed  Google Scholar 

  19. Maruccio G, Visconti P, Arima V, D’Amico S, Biasco A, D’Amone E, Cingolani R, Rinaldi R, Masiero S, Giorgi T (2003) Field effect transistor based on a modified DNA base. Nano Lett 3(4):479–483

    Article  CAS  Google Scholar 

  20. Šmidlehner T, Kurutos A, Slade J, Belužić R, Ang DL, Rodger A, Piantanida I (2018) Versatile click cyanine amino acid conjugates showing one-atom-influenced recognition of DNA/RNA secondary structure and mitochondrial localisation in living cells. Eur J Org Chem 14:1682–1692

    Article  CAS  Google Scholar 

  21. Xia CJ, Chen AM, Zhang YT (2014) Effect of carbon nanotubes chirality on the E-C photo-isomerization switching behavior in moelcular device. Optik 125(16):4522–4525

    Article  CAS  Google Scholar 

  22. Collier C, Wong E, Belohradský M, Raymo F, Stoddart J, Kuekes P, Williams R, Heath J (1999) Electronically configurable molecular-based logic gates. Science 285(5426):391–394

    Article  CAS  PubMed  Google Scholar 

  23. Jiang F, Zhou Y, Chen H, Note R, Mizuseki H, Kawazoe Y (2006) First-principles study of phenyl ethylene oligomers as current-switch. Phys Lett A 359(5):487–493

    Article  CAS  Google Scholar 

  24. Liao J, Agustsson JS, Wu S, Schönenberger C, Calame M, Leroux Y, Mayor M, Jeannin O, Ran Y-F, Liu S-X (2010) Cyclic conductance switching in networks of redox-active molecular junctions. Nano Lett 10(3):759–764

    Article  CAS  PubMed  Google Scholar 

  25. Chen F, He J, Nuckolls C, Roberts T, Klare JE, Lindsay S (2005) A molecular switch based on potential-induced changes of oxidation state. Nano Lett 5(3):503–506

    Article  CAS  PubMed  Google Scholar 

  26. Irie MJCR (2000) Diarylethenes for memories and switches. Chem Rev 100(5):1685–1716

    Article  CAS  PubMed  Google Scholar 

  27. Krayushkin M, Ivanov S, Martynkin AY, Lichitsky B, Dudinov A, Uzhinov (2001) Photochromic dihetarylethenes: 11 synthesis and photochromic properties of diarylethenes containing furan or furopyrimidine bridges. Russ Chem Bull 50(12):2424–2427

    Article  CAS  Google Scholar 

  28. Dulić D, van der Molen SJ, Kudernac T, Jonkman H, De Jong J, Bowden T, Van Esch J, Feringa B, Van Wees B (2003) One-way optoelectronic switching of photochromic molecules on gold. Phys Rev Lett 91(20):207402–207406

    Article  PubMed  CAS  Google Scholar 

  29. Van Dyck C, Geskin V, Cornil J (2014) Fermi level pinning and orbital polarization effects in molecular junctions: the role of metal induced gap states. Adv Funct Mater 24(39):6154–6165

    Article  CAS  Google Scholar 

  30. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G (2009) Gaussian 09, revision D. 01. Gaussian, Inc., Wallingford CT,

  31. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–790

    Article  CAS  Google Scholar 

  32. Cao Y, Ge Q, Dyer DJ, Wang L (2003) Steric effects on the adsorption of alkylthiolate self-assembled monolayers on Au (111). J Phys Chem B 107(16):3803–3807

    Article  CAS  Google Scholar 

  33. Sellers H, Ulman A, Shnidman Y, Eilers JE (1993) Structure and binding of alkanethiolates on gold and silver surfaces: implications for self-assembled monolayers. J Am Chem Soc 115(21):9389–9401

    Article  CAS  Google Scholar 

  34. Geng W, Nara J, Ohno T (2004) Adsorption of benzene thiolate on the (111) surface of M (M= Pt, Ag, Cu) and the conductance of M/benzene dithiolate/M molecular junctions: a first-principles study. Thin Solid Films 464:379–383

    Article  CAS  Google Scholar 

  35. Kondo H, Nara J, Kino H, Ohno T (2009) Transport properties of a biphenyl-based molecular junction system: the electrode metal dependence. J Phys Condens Matter 21(6):064220–064225

    Article  PubMed  CAS  Google Scholar 

  36. Kanaani A, Ajloo D, Kiyani H, Shaheri F, Amiri M (2016) Synthesis, molecular structure, spectroscopic investigations and computational study of a potential molecular switch of 2-([1, 1’-biphenyl]-4-yl)-2-methyl-6-(4-nitrophenyl)-4-phenyl-1, 3 diazabicyclo [3.1.0] hex-3-ene. J Chem Sci 128(8):1211–1221

    Article  CAS  Google Scholar 

  37. Kanaani A, Ajloo D, Kiyani H, Ghasemian H, Vakili M, Feizabadi M (2016) Molecular structure, spectroscopic investigations and computational study on the potential molecular switch of (E)-1-(4-(2-hydroxybenzylideneamino) phenyl) ethanone. Mol Phys 114(13):2081–2097

    Article  CAS  Google Scholar 

  38. Gottschalck J, Hammer B (2002) A density functional theory study of the adsorption of sulfur, mercapto, and methylthiolate on Au (111). J Chem Phys 116(2):784–790

    Article  CAS  Google Scholar 

  39. Rodriguez JA, Hrbek J, Kuhn M, Jirsak T, Chaturvedi S, Maiti A (2000) Interaction of sulfur with Pt (111) and Sn/Pt (111): effects of coverage and metal–metal bonding on reactivity toward sulfur. J Chem Phys 113(24):11284–11292

    Article  CAS  Google Scholar 

  40. Martorell B, Clotet A, Fraxedas J (2010) A first principle study of the structural, vibrational and electronic properties of tetrathiafulvalene adsorbed on Ag (110) and Au (110) surfaces. J Comput Chem 31(9):1842–1852

    CAS  PubMed  Google Scholar 

  41. Zhao P, Liu D, Xie S (2008) Ab initio investigation of the I–V characteristics of the phenoxynaphthacenequinone-based optical molecular switch. Phys Lett A 372(36):5811–5815

    Article  CAS  Google Scholar 

  42. Das B, Abe S, Naitoh Y, Horikawa M, Yatabe T, Suzuki Y, Funaki T, Tsuzuki S, Kawanishi Y (2007) Modeling and testing of molecular wire sensors to detect a nucleic acid base. J Phys Chem C 111(8):3495–3504

    Article  CAS  Google Scholar 

  43. Staykov A, Nozaki D, Yoshizawa K (2007) Photoswitching of conductivity through a diarylperfluorocyclopentene nanowire. J Phys Chem C 111(8):3517–3521

    Article  CAS  Google Scholar 

  44. Brandbyge M, Mozos J-L, Ordejón P, Taylor J, Stokbro K (2002) Density-functional method for nonequilibrium electron transport. Phys Rev B 65(16):165401–165419

    Article  CAS  Google Scholar 

  45. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    Article  CAS  PubMed  Google Scholar 

  46. Marsella MJ, Wang Z-Q, Mitchell RH (2000) Backbone photochromic polymers containing the dimethyldihydropyrene moiety: toward optoelectronic switches. Org Lett 2(19):2979–2982

    Article  CAS  PubMed  Google Scholar 

  47. Nara J, Si H, Morikawa Y, Ohno T (2004) Density functional theory investigation of benzenethiol adsorption on Au (111). J Chem Phys 120(14):6705–6711

    Article  CAS  PubMed  Google Scholar 

  48. Van Duin AC, Strachan A, Stewman S, Zhang Q, Xu X, Goddard WA (2003) ReaxFFSiO reactive force field for silicon and silicon oxide systems. J Phys Chem A 107(19):3803–3811

    Article  CAS  Google Scholar 

  49. Datta S (1997) Electronic transport in mesoscopic systems. Cambridge University Press

    Google Scholar 

  50. Staykov A, Nozaki D, Yoshizawa K (2007) Theoretical study of donor-π-bridge-acceptor unimolecular electric rectifier. J Phys Chem C 111(31):11699–11705

    Article  CAS  Google Scholar 

  51. Ren H, Zhang G, Lin N, Deng L, Luo Y, Huang F (2016) Strong Fermi level pinning induces a high rectification ratio and negative differential resistance in hydrogen bonding bridged single cytidine pair junctions. Phys Chem Chem Phys 18(38):26586–26594

    Article  CAS  PubMed  Google Scholar 

  52. Pshenichnyuk IA, Coto PB, Leitherer S, Thoss M (2013) Charge transport in pentacene–graphene nanojunctions. J Phys Chem Lett 4(5):809–814

    Article  CAS  PubMed  Google Scholar 

  53. Thygesen KS, Jacobsen KW (2005) Molecular transport calculations with Wannier functions. Chem Phys 319(1–3):111–125

    Article  CAS  Google Scholar 

  54. Stokbro K, Taylor J, Brandbyge M, Mozos J-L, Ordejon P (2003) Theoretical study of the nonlinear conductance of Di-thiol benzene coupled to Au (1 1 1) surfaces via thiol and thiolate bonds. Comput Mater Sci 27(1–2):151–160

    Article  CAS  Google Scholar 

  55. Van Dyck C, Geskin V, Cornil J (2015) NEGF-DFT characterization of diarylethene photoswitches: impact of substituents. In: AIP Conference Proceedings. American Institute of Physics, pp 505–508

  56. Kim B, Choi SH, Zhu X-Y, Frisbie CD (2011) Molecular tunnel junctions based on π-conjugated oligoacene thiols and dithiols between Ag, Au, and Pt contacts: effect of surface linking group and metal work function. J Am Chem Soc 133(49):19864–19877

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Funding for this work has been received from the Ferdowsi University of Mashhad, Mashhad, Iran.

Author information

Authors and Affiliations

Authors

Contributions

NF was involved in writing-original draft, methodology, and formal analysis. MV was involved in supervision, writing and editing, software, funding acquisition. AK was involved in supervision, writing and editing, and software. ARN was involved in writing and editing and software.

Corresponding authors

Correspondence to Mohammad Vakili or Ayoub Kanaani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1235 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farbodnia, N., Vakili, M., Kanaani, A. et al. Electronic transport behavior of 2-amino-4,5-bis(2,5-dimethylthiophen-3-yl)furan-3-carbonitrile (a diarylethene) as optical molecular switch: a first-principles approach. Theor Chem Acc 140, 142 (2021). https://doi.org/10.1007/s00214-021-02837-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02837-7

Keywords

Navigation