Skip to main content
Log in

Electronic transport behavior of 4,6-bis(4-nitrophenyl)-2-phenyl-3,5-diaza-bicyclo[3.1.0]hex-2-ene (a bicyclic aziridine) as optical molecular switch: a first-principles approach

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this study, the electronic transport properties of 4,6-bis(4-nitrophenyl)-2-phenyl-3,5-diaza-bicyclo[3.1.0]hex-2-ene (as a bicyclic aziridine) have been studied by nonequilibrium green’s function (NEGF) joint with density functional theory (DFT). This molecule can be converted from close form to open form by ultraviolet radiation or visible light. Several parameters, including different molecular geometries, influence of electrode constituents (Pt, Au, and Ag), I–V characteristics, onoff ratio, HOMO–LUMO gaps, and electronic transmission coefficients T(E) under various bias voltages have been investigated. The results showed that as the molecule changes from close form to open form (close → open), conductivity changes from off state (low conductivity) to on state (high conductivity). The maximum current ratio (best switching efficiency) is about 32.8 at 0.6 V in the Au electrode. The current ratio changes are almost similar at the Ag and Pt electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

Code availability

Not applicable.

References

  1. Reed, M.A., Zhou, C., Muller, C., Burgin, T., Tour, J.: Conductance of a molecular junction. Science 278, 252–254 (1997)

    Article  Google Scholar 

  2. Venkataraman, L., Klare, J.E., Nuckolls, C., Hybertsen, M.S., Steigerwald, M.L.: Dependence of single-molecule junction conductance on molecular conformation. Nature 442, 904–907 (2006)

    Article  Google Scholar 

  3. Correa-Duarte, M.A., Wagner, N., Rojas-Chapana, J., Morsczeck, C., Thie, M., Giersig, M.: Fabrication and biocompatibility of carbon nanotube-based 3D networks as scaffolds for cell seeding and growth. Nano Lett. 4, 2233–2236 (2004)

    Article  Google Scholar 

  4. Guo, X., Small, J.P., Klare, J.E., Wang, Y., Purewal, M.S., Tam, I.W., Hong, B.H., Caldwell, R., Huang, L., O’brien, S.: Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules. Science. 311, 356–9 (2006)

    Article  Google Scholar 

  5. Chen, J., Reed, M., Rawlett, A., Tour, J.: Large on-off ratios and negative differential resistance in a molecular electronic device. Science 286, 1550–1552 (1999)

    Article  Google Scholar 

  6. Khosravi, E., Stefanucci, G., Kurth, S., Gross, E.: Bound states in time-dependent quantum transport: oscillations and memory effects in current and density. Phys. Chem. Chem. Phys. 11, 4535–4538 (2009)

    Article  Google Scholar 

  7. Kanaani, A., Vakili, M., Ajloo, D.: Electronic transport properties of 2-nitro-4-(6-(4-nitrophenyl)-4-phenyl-1, 3-diaza-bicyclo [3.1. 0] hex-3-en-2-yl) phenol: A light-driven molecular switch. Optik. 219, 165295 (2020)

    Article  Google Scholar 

  8. Sayyar, Z., Vakili, M., Kanaani, A., Eshghi, H.: First-principles study of 2, 6-dimethyl-3, 5-heptanedione: a β-diketone molecular switch induced by hydrogen transfer. J. Comput. Electron. 19, 917–930 (2020)

    Article  Google Scholar 

  9. Ayoub, K., Mohammad, V., Davood, A., Mehdi, N.: Current–voltage characteristics of the aziridine-based nano-molecular wires: a light-driven molecular switch. Chin. Phys. Lett. 35, 48501–48506 (2018)

    Article  Google Scholar 

  10. Kanaani, A., Ajloo, D., Kiyani, H., Amri, S.A.N.: First-principles study of the electronic transport properties of a 1, 3-diazabicyclo [3.1. 0] hex-3-ene molecular optical switch. Optik. 153, 135–43 (2018)

    Article  Google Scholar 

  11. Vakili, M., Sobhkhizi, A., Darugar, V., Kanaani, A., Ajloo, D.: A first-principles study of aryloxyanthraquinone-based optical molecular switch. Chem. Phys. Lett. 686, 140–147 (2017)

    Article  Google Scholar 

  12. Zhou, Y.-H., Zheng, X.-H., Xu, Y., Zeng, Z.Y.: Current rectification by asymmetric molecules: an ab initio study. J. Chem. Phys. 125, 244701 (2006)

    Article  Google Scholar 

  13. Rocha, A.R., Rossi, M., Fazzio, A., da Silva, A.J.: Designing real nanotube-based gas sensors. Phys. Rev. Lett. 100, 176803 (2008)

    Article  Google Scholar 

  14. Maruccio, G., Visconti, P., Arima, V., D’Amico, S., Biasco, A., D’Amone, E., Cingolani, R., Rinaldi, R., Masiero, S., Giorgi, T.: Field effect transistor based on a modified DNA base. Nano Lett. 3, 479–483 (2003)

    Article  Google Scholar 

  15. Xia, C.J., Chen, A.M., Zhang, Y.T.: Effect of carbon nanotubes chirality on the E-C photo-isomerization switching behavior in moelcular device. Optik 125, 4522–4525 (2014)

    Article  Google Scholar 

  16. Collier, C., Wong, E., Belohradský, M., Raymo, F., Stoddart, J., Kuekes, P., Williams, R., Heath, J.: Electronically configurable molecular-based logic gates. Science 285, 391–394 (1999)

    Article  Google Scholar 

  17. Jiang, F., Zhou, Y., Chen, H., Note, R., Mizuseki, H., Kawazoe, Y.: First-principles study of phenyl ethylene oligomers as current-switch. Phys. Lett. A. 359, 487–493 (2006)

    Article  Google Scholar 

  18. Liao, J., Agustsson, J.S., Wu, S., Schönenberger, C., Calame, M., Leroux, Y., Mayor, M., Jeannin, O., Ran, Y.-F., Liu, S.-X.: Cyclic conductance switching in networks of redox-active molecular junctions. Nano Lett. 10, 759–764 (2010)

    Article  Google Scholar 

  19. Chen, F., He, J., Nuckolls, C., Roberts, T., Klare, J.E., Lindsay, S.: A molecular switch based on potential-induced changes of oxidation state. Nano Lett. 5, 503–506 (2005)

    Article  Google Scholar 

  20. Irie, M.J.C.R.: Diarylethenes for memories and switches. Chem. Rev. 100, 1685–1716 (2000)

    Article  Google Scholar 

  21. Kiyani, H., Mahmoodi, N.O., Tabatabaeian, K., Zanjanchi, M.A.: Synthesis and photochromism of 1, 3-diazabicyclo [3.1. 0] hex-3-ene phenol rings. Mendeleev. Commun. 19, 203–5 (2009)

    Article  Google Scholar 

  22. Kiyani, H., Pourmousavi, S.A., Farahani, M., Mahmoodi, N.O.: Synthesis of 1, 3-diazabicyclo [3.1. 0] hex-3-ene system under microwave irradiation. J. Taibah. Univ. Sci. 7, 72–8 (2013)

    Article  Google Scholar 

  23. Ghavidast, A., Mahmoodi, N.O., Zanjanchi, M.A.: Synthesis and photochromic properties of disulfide-1, 3-diazabicyclo [3.1. 0] hex-3-ene functionalized silver nanoparticles. J. Mol. Liq. 198, 128–33 (2014)

    Article  Google Scholar 

  24. Frisch, M., Trucks, G., Schlegel, H., Scuseria, G., Robb, M., Cheeseman, J., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.: Gaussian 09, revision D. 01. Gaussian Inc, Wallingford CT (2009)

    Google Scholar 

  25. Lee, C., Yang, W., Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 37, 785–789 (1988)

    Article  Google Scholar 

  26. Cao, Y., Ge, Q., Dyer, D.J., Wang, L.: Steric effects on the adsorption of alkylthiolate self-assembled monolayers on Au (111). J. Phys. Chem B. 107, 3803–3807 (2003)

    Article  Google Scholar 

  27. Sellers, H., Ulman, A., Shnidman, Y., Eilers, J.E.: Structure and binding of alkanethiolates on gold and silver surfaces: implications for self-assembled monolayers. J. Am. Chem. Soc. 115, 9389–9401 (1993)

    Article  Google Scholar 

  28. Geng, W., Nara, J., Ohno, T.: Adsorption of benzene thiolate on the (111) surface of M (M= Pt, Ag, Cu) and the conductance of M/benzene dithiolate/M molecular junctions: a first-principles study. Thin Solid Films 464, 379–383 (2004)

    Article  Google Scholar 

  29. Kondo, H., Nara, J., Kino, H., Ohno, T.: Transport properties of a biphenyl-based molecular junction system—the electrode metal dependence. J. Phys. Condens. Matter. 21, 064220 (2009)

    Article  Google Scholar 

  30. Kanaani, A., Ajloo, D., Kiyani, H., Shaheri, F., Amiri, M.: Synthesis, molecular structure, spectroscopic investigations and computational study of a potential molecular switch of 2-([1, 1’-biphenyl]-4-yl)-2-methyl-6-(4-nitrophenyl)-4-phenyl-1, 3 diazabicyclo [3.1. 0] hex-3-ene. J. Chem. Sci. 128, 1211–21 (2016)

    Article  Google Scholar 

  31. Kanaani, A., Ajloo, D., Kiyani, H., Ghasemian, H., Vakili, M., Feizabadi, M.: Molecular structure, spectroscopic investigations and computational study on the potential molecular switch of (E)-1-(4-(2-hydroxybenzylideneamino) phenyl) ethanone. Mol. Phys. 114, 2081–2097 (2016)

    Article  Google Scholar 

  32. Gottschalck, J., Hammer, B.: A density functional theory study of the adsorption of sulfur, mercapto, and methylthiolate on Au (111). J. Chem. Phys. 116, 784–790 (2002)

    Article  Google Scholar 

  33. Kondoh, H., Iwasaki, M., Shimada, T., Amemiya, K., Yokoyama, T., Ohta, T., Shimomura, M., Kono, S.: Adsorption of thiolates to singly coordinated sites on Au (111) evidenced by photoelectron diffraction. Phys. Rev. Lett. 90, 066102 (2003)

    Article  Google Scholar 

  34. Jiang, Z., Li, M., Yan, T., Fang, T.: Decomposition of H2O on clean and oxygen-covered Au (1 0 0) surface: A DFT study. Appl. Surf. Sci. 315, 16–21 (2014)

    Article  Google Scholar 

  35. Rodriguez, J.A., Hrbek, J., Kuhn, M., Jirsak, T., Chaturvedi, S., Maiti, A.: Interaction of sulfur with Pt (111) and Sn/Pt (111): effects of coverage and metal–metal bonding on reactivity toward sulfur. J. Chem. Phys. 113, 11284–11292 (2000)

    Article  Google Scholar 

  36. Ma, S., Jiao, Z., Yang, Z.: Coverage effects on the adsorption of sulfur on Co (0 0 0 1): a DFT study. Surf Sci. 604, 817–823 (2010)

    Article  Google Scholar 

  37. Martorell, B., Clotet, A., Fraxedas, J.: A first principle study of the structural, vibrational and electronic properties of tetrathiafulvalene adsorbed on Ag (110) and Au (110) surfaces. J. Comput. Chem. 31, 1842–1852 (2010)

    Google Scholar 

  38. Seitsonen, A.P., Zhu, Y., Bedürftig, K., Over, H.: Bonding mechanism and atomic geometry of an ordered hydroxyl overlayer on Pt (111). J. Am. Chem. Soc. 123, 7347–7351 (2001)

    Article  Google Scholar 

  39. Persson, I., Nilsson, K.B.: Coordination chemistry of the solvated silver (I) Ion in the oxygen donor solvents water, dimethyl sulfoxide, and N, N ‘-dimethylpropyleneurea. Inorg. Chem. 45, 7428–7434 (2006)

    Article  Google Scholar 

  40. Zhao, P., Liu, D., Xie, S.: Ab initio investigation of the I-V characteristics of the phenoxynaphthacenequinone-based optical molecular switch. Phys. Lett. A. 372, 5811–5815 (2008)

    Article  MATH  Google Scholar 

  41. Das, B., Abe, S., Naitoh, Y., Horikawa, M., Yatabe, T., Suzuki, Y., Funaki, T., Tsuzuki, S., Kawanishi, Y.: Modeling and testing of molecular wire sensors to detect a nucleic acid base. J. Phys. Chem C. 111, 3495–3504 (2007)

    Article  Google Scholar 

  42. Staykov, A., Nozaki, D., Yoshizawa, K.: Photoswitching of conductivity through a diarylperfluorocyclopentene nanowire. J. Phys. Chem. C 111, 3517–3521 (2007)

    Article  Google Scholar 

  43. Brandbyge, M., Mozos, J.-L., Ordejón, P., Taylor, J., Stokbro, K.: Density-functional method for nonequilibrium electron transport. Phys. Rev. B. 65, 165401–165419 (2002)

    Article  Google Scholar 

  44. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev Lett. 77, 3865–3868 (1996)

    Article  Google Scholar 

  45. Marsella, M.J., Wang, Z.-Q., Mitchell, R.H.: Backbone photochromic polymers containing the dimethyldihydropyrene moiety: Toward optoelectronic switches. Org Lett. 2, 2979–2982 (2000)

    Article  Google Scholar 

  46. Nara, J., Higai, S.I., Morikawa, Y., Ohno, T.: Density functional theory investigation of benzenethiol adsorption on Au (111). J. Chem. Phys. 120, 6705–11 (2004)

    Article  Google Scholar 

  47. Van Duin, A.C., Strachan, A., Stewman, S., Zhang, Q., Xu, X., Goddard, W.A.: ReaxFFSiO reactive force field for silicon and silicon oxide systems. J. Phys. Chem A. 107, 3803–3811 (2003)

    Article  Google Scholar 

  48. Datta, S.: Electronic transport in mesoscopic systems. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  49. Staykov, A., Nozaki, D., Yoshizawa, K.: Theoretical study of donor-π-bridge-acceptor unimolecular electric rectifier. J. Phys. Chem. C 111, 11699–11705 (2007)

    Article  Google Scholar 

Download references

Funding

Funding for this work has been received from the Ferdowsi University of Mashhad, Mashhad, Iran.

Author information

Authors and Affiliations

Authors

Contributions

RA: Writing-original draft, methodology, formal analysis. MV: supervision, writing and editing, software, funding acquisition, writing and editing.

Corresponding author

Correspondence to Mohammad Vakili.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afzali, R., Vakili, M. Electronic transport behavior of 4,6-bis(4-nitrophenyl)-2-phenyl-3,5-diaza-bicyclo[3.1.0]hex-2-ene (a bicyclic aziridine) as optical molecular switch: a first-principles approach. J Comput Electron 21, 61–70 (2022). https://doi.org/10.1007/s10825-021-01841-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01841-1

Keywords

Navigation