Skip to main content
Log in

DFT calculations of electronic structure evaluation and intermolecular interactions of p53-derived peptides with cytotoxic effect on breast cancer

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Cancer is the second cause of death worldwide, leading to the high mortality rate, breast cancer. It is a global health problem due to its severe clinical manifestations and it is also related to a great variety of genetic and environmental risk factors with which it is associated. The knowledge of molecules involved in tumor processes allows identifying therapeutic targets to develop new drugs. Computational chemistry allows exploring and analyzing molecules at the atomic level with therapeutic functionality. In this work, we evaluate and analyze the stability, the physicochemical properties and chemical reactivity of p53-derived peptides with cytotoxic effect on breast cancer, using quantum-chemical descriptors: chemical hardness, ionization potential, electrophilicity index, atomic charges, and molecular orbitals at the DFT-B3LYP level in aqueous solution, and its intermolecular interactions by molecular docking. The results showed that hydrophobic amino acids improve the cytotoxic effect. Peptides with three mutations are less stable than peptides with two mutations; hence, a more stable peptide does not necessarily imply a high therapeutic effect. Residues: F19, W22, W23 and their respective atomic charges of nitrogen atoms, and its hydrogens (NH) of the amide groups of these amino acids are determinants for the interactions, also contribute to the stability and chemical reactivity and consequently, to the binding affinity of p53 derivative peptides with MDM2 protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA (2011) Cell 144:646–674

    Article  CAS  Google Scholar 

  2. Yates LR, Knappskog S, Wedge D, Farmery JHR, Gonzalez S, Martincorena I, Alexandrov LB, Van Loo P, Haugland HK, Lilleng PK, Gundem G, Gerstung M, Pappaemmanuil E, Gazinska P, Bhosle SG, Jones D, Raine K, Mudie L, Latimer C, Sawyer E, Desmedt C, Sotiriou C, Stratton MR, Sieuwerts AM, Lynch AG, Martens JW, Richardson AL, Tutt A, Lønning PE, Campbell PJ (2017) Cancer Cell 32:169-184.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jackson HW, Fischer JR, Zanotelli VRT, Ali HR, Mechera R, Soysal SD, Moch H, Muenst S, Varga Z, Weber WP, Bodenmiller B (2020) Nature 578:615–620

    Article  CAS  PubMed  Google Scholar 

  4. Paul D (2020) J Cancer Metastasis Treat 6:29

    CAS  Google Scholar 

  5. Annaratone L, Cascardi E, Vissio E, Sarotto I, Chmielik E, Sapino A, Berrino E, Machiò C (2020) Pathobiology 87:125–142

    Article  CAS  PubMed  Google Scholar 

  6. Valente JFA, Queiroz JA, Sousa F (2018) Curr Drug Targets 19:1801–1817

    Article  CAS  PubMed  Google Scholar 

  7. Rosal R, Pincus MR, Brandt-Rauf PW, Fine RL, Michl J, Wang H (2004) Biochemistry 43:1854–1861

    Article  CAS  PubMed  Google Scholar 

  8. Barrientos-Salcedo C, Arenas-Aranda D, Salamanca-Gómez F, Ortiz-Muñiz R, Soriano-Correa C (2007) J Phys Chem A 111:4362–4369

    Article  CAS  PubMed  Google Scholar 

  9. Almazov VP, Kochetkov DV, Chumakov PM (2007) Mol Biol (Mosk) 41:947–963

    Article  CAS  Google Scholar 

  10. Schon O, Friedler A, Freund S, Fersht AR (2004) J Mol Biol 336:197–202

    Article  CAS  PubMed  Google Scholar 

  11. Li C, Pazgier M, Li C, Yuan W, Liu M, Wei G, Lu WY, Lu W (2010) J Mol Biol 398:200–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tan YS, Mhoumadi Y, Verma CS (2019) J Mol Cell Biol 11:306–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jiang L, Zawacka-Pankau J (2020) Cell Death Dis 11:237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Henchey LK, Porter JR, Prof. Ghosh I, Prof. Arora S, (2010) ChemBioChem 11:2104–2107

  15. Popowicz GM, Dömling A, Holak TA (2011) Angew Chem Int Ed Engl 50:2680–2688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fang Y, Jin R, Gao Y, Gao J, Wang J (2014) Amino Acids 46:2015–2024

    Article  CAS  PubMed  Google Scholar 

  17. Farhadi T, Haishemian SMR (2018) Drug Des Devel Ther 12:1239–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Soriano-Correa C, Barrientos-Salcedo C, Raya A, Rubio-Póo C, Esquivel RO (2010) Int J Quant Chem 110:2398–2410

    CAS  Google Scholar 

  19. Soriano-Correa C, Barrientos-Salcedo C, Campos-Fernández L, Alvarado-Salazar A (2015) Esquivel RO Chem Phys 457:180–187

    CAS  Google Scholar 

  20. Esquivel RO, Molina-Espíritu M, López-Rosa S, Soriano-Correa C, Barrientos-Salcedo C, Kohout M, Dehesa JS (2015) ChemPhysChem 16:2571–2581

    Article  CAS  PubMed  Google Scholar 

  21. Henninot A, Collins JC, Nuss JM (2018) J Med Chem 61:1382–1414

    Article  CAS  PubMed  Google Scholar 

  22. Fayed EA, Eissa SI, Bayoumi AH, Gohar NA, Mehany ABM, Ammar YA (2019) Mol Diver 23:165–181

    Article  CAS  Google Scholar 

  23. Fernández A (2020) Mol Pharm 17:2761–2767

    Article  PubMed  CAS  Google Scholar 

  24. Lima AH, Dos Santos AM, Alves CN, Lameira J (2017) Chem Biol Drug Des 89:599–607

    Article  CAS  PubMed  Google Scholar 

  25. Khramushin A, Marcu O, Alam N, Shimony O, Padhorny D, Brini E, Dill KA, Vajda S, Kozakov D, Schueler-Furman O (2020) Proteins 88:1037–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS., Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, Rev. E.01, Gaussian Inc, Wallingford, CT

  27. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  28. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  29. Lee C, Yang W, Parr RG (1988) Phys Rev B Condens Matter 37:785–789

    Article  CAS  PubMed  Google Scholar 

  30. Hehre WJ, Radom L, Schleyer PVR, People JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  31. Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378–6396

    Article  CAS  PubMed  Google Scholar 

  32. Chemical applications of atomic and molecular electrostatic potentials: reactivity, structure, scattering, and energetics of organic, inorganic, and biological systems, ed. Politzer P, Truhlar DG (2013) Springer Science & Business Media

  33. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  34. Parr RG, Szentpály LV, Liu S (1999) J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  35. Pearson RG (2005) J Chem Sci 117:369–377

    Article  CAS  Google Scholar 

  36. Chattaraj PK (2009) Chemical reactivity theory: a density functional view. CRC Press, Boca Raton

    Book  Google Scholar 

  37. Chattaraj PK, Giri S, Duley S (2011) Chem Rev 111: 43–75

  38. Morrison RC (1992) J Chem Phys 96:3718–3722

    Article  CAS  Google Scholar 

  39. Adrian-Scotto M, Mallet G, Vasilescu D (2005) J Mol Struct (Theochem) 728:231–242

    Article  CAS  Google Scholar 

  40. Taghavi F, Sabzyan H (2014) Phys Chem Res 2:41–52

    Google Scholar 

  41. Le Bahers T, Adamo C, Ciofini I (2011) J Chem Theory Comput 7:2498–2506

    Article  PubMed  CAS  Google Scholar 

  42. Spasennović M, Beggs DM, Lalanne P, Krauss TF, Kuipers L (2011) [physics.chem-ph]

  43. Raveh B, London N, Schueler-Furman O (2010) Proteins 78:2029–2040

    Article  CAS  PubMed  Google Scholar 

  44. Raveh B, London N, Zimmerman L, Schueler-Furman O (2011) PLoS One 6:18934

    Article  CAS  Google Scholar 

  45. Gront D, Kulp DW, Vernon RM, Strauss CEM, Baker D (2011) PLoS One 6:23294

    Article  CAS  Google Scholar 

  46. Alam N, Goldstein O, Xia B, Porter KA, Kozakov D, Schueler-Furman O (2017) PLoS Comput Biol 13:1005905

    Article  CAS  Google Scholar 

  47. Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ, Pavletich NP (1996) Science 274:948–953

    Article  CAS  PubMed  Google Scholar 

  48. Schon O, Friedler A, Bycroft M, Freund SMV, Fersht AR (2002) J Mol Biol 323:491–501

    Article  CAS  PubMed  Google Scholar 

  49. Moreira IS, Fernandes PA, Ramos MJ (2008) Theor Chem Account 120:533–542

    Article  CAS  Google Scholar 

  50. Gunner MR, Saleh MA, Cross E (2000) ud-Doula A, Wise M. Biophys J 78:1126–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pauling L (1960) The nature of the chemical bond. Cornell University Press, Ithaca

    Google Scholar 

  52. The Hydrogen Bond/I Theory (1976) ed. Schuster P, Zundel G, Sandorfy C, North-Holland Publishing Co.: Amsterdam, The Netherlands

  53. Smiatek J (2019) J Chem Phys 150:174112–174114

    Article  PubMed  CAS  Google Scholar 

  54. Jana G, Pal R, Sural S, Chattaraj PK (2019) Int J Quantum Chem 120:26097

    Google Scholar 

  55. The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC

  56. Wallace AC, Laskowski RA, Thorton JM (1996) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8:127–134

    Article  Google Scholar 

  57. Samanta S, Mukherjee S (2017) J Comput Aided Mol Des 31:891–903

    Article  CAS  PubMed  Google Scholar 

  58. Chène P (2003) Nat Rev Cancer 3:102–109

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Dirección General de Cómputo y de Tecnologías de Información y Comunicación (DGCTIC) at the Universidad Nacional Autónoma de México (UNAM) for allocation of computer time in the supercomputer (Miztli, LANCAD-UNAM-DGTIC-203). This research was supported by DGAPA-UNAM grant PAPIIT-IN230419. CBS, gratefully acknowledged the computing time granted by LANCAD and CONACYT on the supercomputer Yoltla/Miztli/Xiuhcoatl at LSVP UAM-Iztapalapa/ DGTIC UNAM/CGSTIC CINVESTAV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catalina Soriano-Correa.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 208 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrientos-Salcedo, C., Lara-Rodríguez, M., Campos-Fernández, L. et al. DFT calculations of electronic structure evaluation and intermolecular interactions of p53-derived peptides with cytotoxic effect on breast cancer. Theor Chem Acc 140, 121 (2021). https://doi.org/10.1007/s00214-021-02822-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02822-0

Keywords

Navigation