Skip to main content
Log in

Recognition of the three-dimensional structure of small metal nanoparticles by a supervised artificial neural network

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Catalytic characteristics of metal nanoparticles heavily depend on their global shapes and sizes as well as on the structure and environment of catalytic sites. On the computational chemistry side, calculations of thermodynamic and kinetic data involve a high calculation cost which can be significantly lowered by the use of a trained machine learning model. This paper outlines a preliminary approach that aims at classifying the shape of the metal core of nanoparticles. Four different supervised artificial neural networks were trained, tested and submitted to a challenging dataset. They are based on two different structural descriptors, Coulomb matrices and radial distribution functions (RDFs). Each model is trained with hundreds of 3D models of nanoparticles that belong to eleven structural classes. The best model classifies a NP according to its discretized RDF profile and its first derivative. 100% accuracy is reached on the test stage, and up to 70% accuracy is obtained on the challenging dataset. It is mainly made of compounds that have global shapes significantly different from the training set. But some nonobvious structural patterns make then related to the eleven classes learned by the ANNs. Such strategy could easily be adapted to the recognition of NPs based on experimental neutron or X-ray diffraction data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schmid G (ed.), Nanoparticles. From theory to application, 2nd edn. (Wiley-VCH, Weinheim, Germany, 2010)

  2. Burda C, Chen XB, Narayanan R, El-Sayed MA (2005) Chem Rev 105(4):1025

    Article  CAS  PubMed  Google Scholar 

  3. Wilcoxon JP, Abrams BL (2006) Chem Soc Rev 35(11):1162

    Article  CAS  PubMed  Google Scholar 

  4. Mori T, Hegmann T (2016) J Nanopart Res 18:10

    Article  Google Scholar 

  5. Kaatz FH, Bultheel A (2019) Nanoscale Res Lett 14:1

    Article  CAS  Google Scholar 

  6. Shi Y, Lyu Z, Zhao M, Chen R, Nguyen QN, Xia Y (2020) Chem Rev 121(2):649

    Article  PubMed  Google Scholar 

  7. Niu W, Zhang W, Firdoz S, Lu X (2014) J Am Chem Soc 136(8):3010

    Article  CAS  PubMed  Google Scholar 

  8. Serp P, Philippot K (eds) (2013) Nanomaterials in Catalysis. Wiley-VCH, Weinheim

    Google Scholar 

  9. Polshettiwar V, Varma RS (2010) Green Chem 12(5):743

    Article  CAS  Google Scholar 

  10. Martínez-Prieto LM, Chaudret B (2018) Acc Chem Res 51:376

    Article  PubMed  Google Scholar 

  11. del Rosal I, Poteau R Nanoparticles in Catalysis: Advances in Synthesis and Applications (Wiley-VCH, 2021), chap. Sabatier principle and surface properties of small Ruthenium nanoparticles and clusters. Case studies., pp. 331–348

  12. Chorkendorff I, Niemantsverdriet JW (2003) Concepts Of modern catalysis and kinetics. Wiley-VCH

  13. Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Nat Chem 1(1):37

    Article  PubMed  Google Scholar 

  14. Nørskov JK, Abild-Pedersen F, Studt F, Bligaard T (2011) Proc Natl Acad Sci USA 108(3):937

    Article  PubMed  PubMed Central  Google Scholar 

  15. Abild-Pedersen F, Greeley J, Studt F, Rossmeisl J, Munter TR, Moses PG, Skúlason E, Bligaard T, Nørskov JK (2007) Phys Rev Lett 99:016105

    Article  CAS  PubMed  Google Scholar 

  16. Nørskov JK, Bligaard T, Logadottir A, Kitchin JR, Chen JG, Pandelov S, Stimming U (2005) J Electrochem Soc 152(3):J23

    Article  Google Scholar 

  17. Schlexer Lamoureux P, Winther KT, Garrido Torres JA, Streibel V, Zhao M, Bajdich M, Abild-Pedersen F, Bligaard T (2019) Chem Cat Chem 11(16):3581

    CAS  Google Scholar 

  18. Jäger MOJ, Morooka EV, Federici Canova F, Himanen L, Foster AS (2018) npj Comput Mater 4(1):1

    Article  Google Scholar 

  19. Rupp M, Tkatchenko A, Müller KR, von Lilienfeld OA (2012) Phys Rev Lett 108(5):058301

    Article  PubMed  Google Scholar 

  20. Huo H, Rupp M arXiv:1704.06439 [cond-mat, physics:physics] (2018). http://arxiv.org/abs/1704.06439. ArXiv: 1704.06439

  21. Behler J (2011) J Chem Phys 134(7):074106

    Article  PubMed  Google Scholar 

  22. Bartók AP, Kondor R, Csányi G (2013) Phys Rev B 87(18):184115

    Article  Google Scholar 

  23. Himanen L, Jäger MO, Morooka EV, Canova FF, Ranawat YS, Gao DZ, Rinke P, Foster AS (2020) Comput Phys Commun 247:106949

    Article  CAS  Google Scholar 

  24. Cusinato L, del Rosal I, Poteau R (2017) Dalton Trans 46:378

    Article  CAS  PubMed  Google Scholar 

  25. Vargas JA, Petkov V, Nouh ESA, Ramaamorthy RK, Lacroix LM, Poteau R, Viau G, Lecante P, Arenal R (2018) ACS Nano 12:9521

    Article  CAS  PubMed  Google Scholar 

  26. von Lilienfeld OA, Ramakrishnan R, Rupp M, Knoll A (2015) Int J Quant Chem 115(16):1084

    Article  Google Scholar 

  27. Timoshenko J, Lu D, Lin Y, Frenkel AI (2017) J Phys Chem Lett 8(20):5091

    Article  PubMed  Google Scholar 

  28. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M, Dieleman S, Grewe D, Nham J, Kalchbrenner N, Sutskever I, Lillicrap T, Leach M, Kavukcuoglu K, Graepel T, Hassabis D (2016) Nature 529(7587):484

    Article  CAS  PubMed  Google Scholar 

  29. Krizhevsky A, Sutskever I, Hinton GE (2017) Commun ACM 60(6):84

    Article  Google Scholar 

  30. Cascianelli S, Molineris I, Isella C, Masseroli M, Medico E (2020) Sci Rep 10(1):14071

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sutton AP, Chen J (1990) Philos Mag Lett 61(3):139

    Article  Google Scholar 

  32. Huang R, Wen YH, Shao GF, Sun SG (2013) J Phys Chem C 117(8):4278

    Article  CAS  Google Scholar 

  33. Hewage JW, Rupika WL, Amar FG (2012) Eur Phys J D 66(11):282

    Article  Google Scholar 

  34. Hansen K, Montavon G, Biegler F, Fazli S, Rupp M, Scheffler M, von Lilienfeld OA, Tkatchenko A, Müller KR (2013) J Chem Theor Comput 9(8):3404

    Article  CAS  Google Scholar 

  35. Proffen T, Billinge S (1999) J Appl Crystallogr 32(3):572

    Article  CAS  Google Scholar 

  36. Korsunsky V (2000) Coord Chem Rev 199(1):55

    Article  CAS  Google Scholar 

  37. Hardeveld RV, Hartog F (1969) Surf Sci 15(2):189

    Article  Google Scholar 

  38. Teo BK, Sloane NJA (1985) Inorg Chem 24(26):4545

    Article  CAS  Google Scholar 

  39. Martin TP (1996) Phys Rep 273:199

    Article  CAS  Google Scholar 

  40. Mackay AL (1962) Acta Crystallogr 15(9):916

    Article  CAS  Google Scholar 

  41. Dassenoy F, Casanove MJ, Lecante P, Verelst M, Snoeck E, Mosset A, Ely TO, Amiens C, Chaudret B (2000) J Chem Phys 112(18):8137

    Article  CAS  Google Scholar 

  42. Margeat O, Respaud M, Amiens C, Lecante P, Chaudret B (2010) Beilstein J Nanotechnol 1:108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Frank FC, Kasper JS (1958) Acta Crystallogr 11(3):184

    Article  CAS  Google Scholar 

  44. Frank FC, Kasper JS (1959) Acta Crystallogr 12(7):483

    Article  CAS  Google Scholar 

  45. Rapps T, Ahlrichs R, Waldt E, Kappes MM, Schooss D (2013) Angew Chem Int Ed 52(23):6102

    Article  CAS  Google Scholar 

  46. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) J Mach Learn Res 12:2825

    Google Scholar 

  47. Kingma DP, Ba J Adam: A method for stochastic optimization (2014). http://arxiv.org/abs/1412.6980. Cite arxiv:1412.6980Comment: Published as a conference paper at the 3rd International Conference for Learning Representations, San Diego, (2015)

  48. Kohavi R In Intl Jnt Conf AI (Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1995), IJCAI 95, pp. 1137–1143

  49. Hofmeister H In Encyclopedia of Nanoscience and Nanotechnology, vol. 3, ed. by H.S. Nalwa (American Scientific Publishers, Stevenson Ranch, 2004), pp. 431–452

  50. Ino S (1969) J Phys Soc Jpn 27(4):941

    Article  CAS  Google Scholar 

  51. Marks LD (1983) J Cryst Growth 61(3):556

    Article  CAS  Google Scholar 

  52. Boerdijk A (1952) Philips Res Rep 7:303

    Google Scholar 

  53. Coxeter HSM (1991) Regular Complex Polytopes, 2nd edn. Cambridge University Press

  54. Bernal JD (1960) Nature 185(4706):68

    Article  Google Scholar 

  55. Velaźquez-Salazar JJ, Esparza R, Mejiá-Rosales SJ, Estrada-Salas R, Ponce A, Deepak FL, Castro-Guerrero C, José-Yacamań M (2011) ACS Nano 5(8):6272

    Article  PubMed  PubMed Central  Google Scholar 

  56. Goodfellow I, Bengio Y, Courville A Deep Learning (MIT Press, 2016). http://www.deeplearningbook.org

Download references

Acknowledgements

We acknowledge the CALcul en MIdi-Pyrénées HPC (CALMIP-Olympe, grant P0611) for generous allocations of computer time. Université Paul Sabatier-Toulouse, INSAT and CNRS are also thanked for financial support. FJ and RP also thank Béatrice Laurent-Bonneau and Olivier Roustant for helpful and stimulating discussions. This article is dedicated to Fernand Spiegelmann on the occasion of his retirement. Short private message from RP: “Fernand, je ne te remercierai jamais assez de m’avoir donné la passion de ce métier, d’avoir su aiguiser ma curiosité scientifique, d’avoir contribué à ma formation large en chimie physique et théorique, et de m’avoir appris que développer à bon escient ses propres outils est une démarche féconde”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romuald Poteau.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published as part of the special collection of articles “Festschrift in honor of Fernand Spiegelmann”.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 13478kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fages, T., Jolibois, F. & Poteau, R. Recognition of the three-dimensional structure of small metal nanoparticles by a supervised artificial neural network . Theor Chem Acc 140, 98 (2021). https://doi.org/10.1007/s00214-021-02795-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02795-0

Keywords

Navigation