Skip to main content
Log in

On the growth behavior, structures, energy, and magnetic properties of bimetallic \(\hbox {M}_{{n}}\hbox {Pd}_{{n}}\) (M = Co, Ni; n = 1–10) clusters

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In this work, the growth behavior, structures, energetic and magnetic properties of \(\hbox {Co}_{{n}}\hbox {Pd}_{{n}}\) and \(\hbox {Ni}_{{n}}\hbox {Pd}_{{n}}\) (n = 1–10) clusters were investigated employing auxiliary density functional theory (ADFT). Initial geometries for successive optimization were extracted from Born–Oppenheimer molecular dynamics (BOMD) trajectories. It is demonstrated that when the cluster size increases, the Co and Ni atoms became shrouded by Pd atoms, leading to the initial formation of M@Pd (M = Co and Ni) core–shell structures. The spin multiplicities of the \(\hbox {Co}_{{n}}\hbox {Pd}_{{n}}\) and \(\hbox {Ni}_{{n}}\hbox {Pd}_{{n}}\) (n = 1–10) clusters increase with cluster size. The CoPd clusters exhibit higher spin multiplicity and are characterized by higher spin magnetic moments than the NiPd counterparts. This study reveals that the spin density distributions are located on the Co and Ni atoms in the respective clusters. As the cluster size increases both systems tend to donate more easily electrons and the binding energies per atom grows monotonically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Morse MD (1986) Chem Rev 86:1049–1109

    Article  CAS  Google Scholar 

  2. Castleman AW Jr, Keesee RG (1986) Clusters: properties and formations. Annu Rev Phys Chem 37:525–550

    Article  CAS  Google Scholar 

  3. Salahub DR (1987) Adv Chem Phys 69:447

    CAS  Google Scholar 

  4. Jena P, Khanna SN, Rao BKN (1992) Physics and chemistry of finite systems; from clusters to crystals, vol I and II. Kluwar Academic Publishers, The Netherlands

    Book  Google Scholar 

  5. de Heer WA (1993) Rev Mod Phys 65:611–676

    Article  Google Scholar 

  6. Jug K, Zimmermann B, Calaminici P, Köster AM (2002) J Chem Phys 116:4497–4507

    Article  CAS  Google Scholar 

  7. Calaminici P, Köster AM, Russo N, Roy PN, Carrington T Jr, Salahub DR (2001) J Chem Phys 114:4036–4044

    Article  CAS  Google Scholar 

  8. Calaminici P (2003) Chem Phys Lett 374:650–655

    Article  CAS  Google Scholar 

  9. Calaminici P (2004) Chem Phys Lett 387:253–257

    Article  CAS  Google Scholar 

  10. Baletto F, Ferrando R (2005) Rev Mod Phys 77:371–423

    Article  CAS  Google Scholar 

  11. Lopez-Arvizu G, Calaminici P (2007) J Chem Phys 126:194102

    Article  PubMed  Google Scholar 

  12. Calaminici P (2008) J Chem Phys 128:164317

    Article  PubMed  Google Scholar 

  13. Ferrando R, Jellinek J, Johnston RL (2008) Chem Rev 108:845–910

    Article  CAS  PubMed  Google Scholar 

  14. Medel V, Reber A, Chauhan V, Sen P, Köster AM, Calaminici P, Khanna SN (2014) J Am Chem Soc 136:8229–8236

    Article  CAS  PubMed  Google Scholar 

  15. Cruz-Martínez H, Vásquez-Pérez JM, Solorza-Feria O, Calaminici P (2016) On the ground state structures and energy properties of ConPdn (n = \(1-10\)) clusters. In: Sabin JR, Cabrera-Trujillo R (eds) Advances in Quantum Chemistry: Concepts of Mathematical Physics in Chemistry: A Tribute to Frank E. Harris, Chapter Seven, vol 72. Elsevier, Amsterdam, pp 177–199

    Google Scholar 

  16. Cervantes-Flores A, Cruz-Martínez H, Solorza-Feria O, Calaminici P (2017) J Mol Model 161:1–8

    Google Scholar 

  17. Blades WH, Reber AC, Khanna SN, López-Sosa L, Calaminici P, Köster AM (2017) J Phys Chem A 121:2990–2999

    Article  CAS  PubMed  Google Scholar 

  18. Cruz-Martínez H, López-Sosa L, Solorza-Feria O, Calaminici P (2017) Int J Hydrog Energy 42:30310–30317

    Article  Google Scholar 

  19. López-Sosa L, Cruz-Martínez H, Solorza-Feria O, Calaminici P (2019) Int J Quantum Chem 119:e26013

    Article  Google Scholar 

  20. Cruz-Martínez H, Solorza-Feria O, Calaminici P, Medina DI (2029) J Magn Magn Mat 508:166844

    Article  Google Scholar 

  21. Ramos-Sánchez G, Yee-Madeira H, Solorza-Feria O (2008) Int J Hydrog Energy 33:3596–3600

    Article  Google Scholar 

  22. Antolini E (2009) Energy Environ Sci 2:915–931

    Article  CAS  Google Scholar 

  23. Liu J, Huang Z, Cai K, Zhang H, Lu Z, Li T, Han H (2015) Chem-A Eur J 21:17779–17785

    Article  CAS  Google Scholar 

  24. Chen R, Sun M, Pang G, Zhou J, Hou L, Gao F (2017) Chem Electro Chem 4:1081–1087

    CAS  Google Scholar 

  25. Yang N, Zhang Z, Chen B, Huang Y, Chen J, Lai Z, Fan Z (2017) Adv Mater 29:1700769

    Article  Google Scholar 

  26. Hu S, Munoz F, Noborikawa J, Haan J, Scudiero L, Ha S (2016) Appl Catal B: Environ 180:758–765

    Article  CAS  Google Scholar 

  27. Qiu Y, Xin L, Li WY, McCrum IT, Guo FM, Ma T, Ren Y, Liu Q, Zhou L, Gu S, Janik MJ, Li WZ (2018) J Am Chem Soc 140:16580–16588

    Article  CAS  PubMed  Google Scholar 

  28. Mierzwa B (2004) J Alloys Compd 362:178–188

    Article  CAS  Google Scholar 

  29. Mierzwa B (2005) J Alloys Compd 401:127–134

    Article  CAS  Google Scholar 

  30. Aguilera-Granja F, Vega A, Rogan J, Andrade X, García G (2006) Phys. Rev. B 74:224405

    Article  Google Scholar 

  31. Arslan H (2008) Int J Mod Phys C 19:1243–1255

    Article  CAS  Google Scholar 

  32. Cantera-López H, Montejano-Carrizales JM, Aguilera-Granja F, Morán- López JL (2010) Eur Phys J D 57:61–69

    Article  Google Scholar 

  33. Mokkath JH (2014) J Magn Magn Mater 349:109–115

    Article  CAS  Google Scholar 

  34. Arslan H, Garip AK, Johnston RL (2015) Phys Chem Chem Phys 42:28311–28321

    Article  Google Scholar 

  35. Aslan M, Davis JBA, Johnston RL (2016) Phys Chem Chem Phys 18:6676–6682

    Article  CAS  PubMed  Google Scholar 

  36. Rodriguez-Kessler PL, Navarro-Santos P, Rodríguez-Domínguez AR (2019) Chem Phys Lett 715:141–146

    Article  CAS  Google Scholar 

  37. Wang Q, Sun Q, Yu JZ, Hashi Y, Kawazoe Y (2000) Phys Lett A 267:394–402

    Article  CAS  Google Scholar 

  38. Guevara J, Llois AM, Aguilera-Granja F, Montejano-Carrizales JM (2004) Physica B-Condens Matter 354:300–302

    Article  CAS  Google Scholar 

  39. Nieves-Torres S, Mo E, López GE (2011) Mater Chem Phys 129:580

    Article  CAS  Google Scholar 

  40. Chutia A, Tokuyama M (2011) Chem Phys Lett 515:96–100

    Article  CAS  Google Scholar 

  41. Aguilera-Granja F, Gallego LJ (2013) J Appl Phys 114:054311

    Article  Google Scholar 

  42. Hewage JW (2014) Eur Phys J D 68:143–150

    Article  Google Scholar 

  43. Hewage JW (2015) Mater Chem Phys 149:663

    Article  Google Scholar 

  44. Zhu J, Cheng P, Wang N, Huang S (2015) Comput Theor Chem 1071:9

    Article  CAS  Google Scholar 

  45. Derry GN, Wan R, Krueger E, Waldt J, English C (2009) Surf Sci 603:2193–2199

    Article  CAS  Google Scholar 

  46. Helfensteyn S, Luyten J, Feyaerts L, Creemers C (2003) Appl Surf Sci 212:844–849

    Article  Google Scholar 

  47. Cruz-Martínez H, Ortíz-Balderas CN, Solorza-Feria O, Calaminici P (2016) Mol Phys 114:1019

    Article  Google Scholar 

  48. Köster AM, Geudtner G, Alvarez-Ibarra A, Calaminici P, Casida ME, Carmona-Espindola J, Dominguez VD, Flores-Moreno R, Gamboa GU, Goursot A, Heine T, Ipatov A, de la Lande A, Janetzko F, del Campo JM, Mejía-Rodriguez D, Reveles JU, Vásquez-Pérez J, Vela A, Zuniga-Gutierrez B, Salahub DR (2016) deMon2k, Version 4. The deMon developers. Cinvestav, Mexico City

    Google Scholar 

  49. Geudtner G, Calaminici P, Carmona-Espíndola J, del Campo J, Domínguez-Soria VD, Flores-Moreno R, Gamboa GU, Goursot A, Köster AM, Reveles JU, Mineva T, Vásquez-Pérez JM, Vela A, Zuniga-Gutierrez B, Salahub DR (2012) WIREs Comput Mol Sci 2:548–600

    Article  CAS  Google Scholar 

  50. Calaminici P, Domínguez-Soria VD, Geudtner G, Hernández-Marín, Köster AM (2005) Superficies y Vacío 18:1

  51. Calaminici P, Domínguez-Soria VD, Geudtner G, Hernández-Marín J, Köster AM (2006) Theor Chem Acc 115:221

    Article  CAS  Google Scholar 

  52. Zhang Y, Yang W (1998) Phys Rev Lett 80:890–895

    Article  CAS  Google Scholar 

  53. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:38–42

    Article  Google Scholar 

  54. Andrae D, Haeussermann U, Dolg M, Stoll H, Preuss H (1990) Theor Chim Acta 77:123–130

    Article  CAS  Google Scholar 

  55. Calaminici P, Janetzko F, Köster AM, Mejia-Olvera R, Zuniga-Gutierrez B (2007) J Chem Phys 126:044108

    Article  PubMed  Google Scholar 

  56. Köster AM, Reveles JU, del Campo JM (2004) J Chem Phys 121:3417–3423

    Article  PubMed  Google Scholar 

  57. Geudtner G, Calaminici P, Köster AM (2013) J Phys Chem C 117:13210

    Article  CAS  Google Scholar 

  58. Cruz-Olvera D, Calaminici P (2016) Comput Theor Chem 1078:55–62

    Article  CAS  Google Scholar 

  59. Vásquez-Pérez JM, Gamboa Martínez GU, Köster AM, Calaminici P (2009) J Chem Phys 131:24126

    Article  Google Scholar 

  60. Nosé SA (1984) J Chem Phys 81:511–519

    Article  Google Scholar 

  61. Hoover WG (1985) Phys Rev A 31:1695–1702

    Article  CAS  Google Scholar 

  62. Martyna GJ, Klein ML, Tuckerman M (1992) J Chem Phys 97:2635–2643

    Article  Google Scholar 

  63. Reveles JU, Köster AM (2004) J Comput Chem 25:1109–1116

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

HCM acknowledges CONACYT for the doctoral and postdoctoral fellowship. This work was partially financially supported by the CONACYT project CB-252658. Computational time from the Hybrid Cluster Supercomputer “Xiuhcoatl” at CINVESTAV and from the WESTGRID of Compute Canada is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dora I. Medina or Patrizia Calaminici.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published as part of the special collection of articles “Festschrift in honor of Fernand Spiegelmann”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz-Martínez, H., Cervantes-Flores, A., Solorza-Feria, O. et al. On the growth behavior, structures, energy, and magnetic properties of bimetallic \(\hbox {M}_{{n}}\hbox {Pd}_{{n}}\) (M = Co, Ni; n = 1–10) clusters. Theor Chem Acc 140, 45 (2021). https://doi.org/10.1007/s00214-021-02738-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02738-9

Keywords

Navigation